Tabular data serve as a fundamental and ubiquitous representation of structured information in numerous real-world applications, e.g., finance and urban planning. In the realm of tabular imbalanced applications, data imbalance has been investigated in classification tasks with insufficient instances in certain labels, causing the model's ineffective generalizability. However, the imbalance issue of tabular regression tasks is underexplored, and yet is critical due to unclear boundaries for continuous labels and simplifying assumptions in existing imbalance regression work, which often rely on known and balanced test distributions. Such assumptions may not hold in practice and can lead to performance degradation. To address these issues, we propose MATI: Mixture Experts with Test-Time Self-Supervised Aggregation for Tabular Imbalance Regression, featuring two key innovations: (i) the Region-Aware Mixture Expert, which adopts a Gaussian Mixture Model to capture the underlying related regions. The statistical information of each Gaussian component is then used to synthesize and train region-specific experts to capture the unique characteristics of their respective regions. (ii) Test-Time Self-Supervised Expert Aggregation, which dynamically adjusts region expert weights based on test data features to reinforce expert adaptation across varying test distributions. We evaluated MATI on four real-world tabular imbalance regression datasets, including house pricing, bike sharing, and age prediction. To reflect realistic deployment scenarios, we adopted three types of test distributions: a balanced distribution with uniform target frequencies, a normal distribution that follows the training data, and an inverse distribution that emphasizes rare target regions. On average across these three test distributions, MATI achieved a 7.1% improvement in MAE compared to existing methods.