Abstract:Multi-view multi-label classification (MvMLC) is indispensable for modern web applications aggregating information from diverse sources. However, real-world web-scale settings are rife with missing views and continuously emerging classes, which pose significant obstacles to robust learning. Prevailing methods are ill-equipped for this reality, as they either lack adaptability to new classes or incur exponential parameter growth when handling all possible missing-view patterns, severely limiting their scalability in web environments. To systematically address this gap, we formally introduce a novel task, termed \emph{incomplete multi-view multi-label class incremental learning} (IMvMLCIL), which requires models to simultaneously address heterogeneous missing views and dynamic class expansion. To tackle this task, we propose \textsf{E2PL}, an Effective and Efficient Prompt Learning framework for IMvMLCIL. \textsf{E2PL} unifies two novel prompt designs: \emph{task-tailored prompts} for class-incremental adaptation and \emph{missing-aware prompts} for the flexible integration of arbitrary view-missing scenarios. To fundamentally address the exponential parameter explosion inherent in missing-aware prompts, we devise an \emph{efficient prototype tensorization} module, which leverages atomic tensor decomposition to elegantly reduce the prompt parameter complexity from exponential to linear w.r.t. the number of views. We further incorporate a \emph{dynamic contrastive learning} strategy explicitly model the complex dependencies among diverse missing-view patterns, thus enhancing the model's robustness. Extensive experiments on three benchmarks demonstrate that \textsf{E2PL} consistently outperforms state-of-the-art methods in both effectiveness and efficiency. The codes and datasets are available at https://anonymous.4open.science/r/code-for-E2PL.
Abstract:Retrieval-Augmented Generation (RAG) improves large language models by retrieving external knowledge, often truncated into smaller chunks due to the input context window, which leads to information loss, resulting in response hallucinations and broken reasoning chains. Moreover, traditional RAG retrieves unstructured knowledge, introducing irrelevant details that hinder accurate reasoning. To address these issues, we propose TAdaRAG, a novel RAG framework for on-the-fly task-adaptive knowledge graph construction from external sources. Specifically, we design an intent-driven routing mechanism to a domain-specific extraction template, followed by supervised fine-tuning and a reinforcement learning-based implicit extraction mechanism, ensuring concise, coherent, and non-redundant knowledge integration. Evaluations on six public benchmarks and a real-world business benchmark (NowNewsQA) across three backbone models demonstrate that TAdaRAG outperforms existing methods across diverse domains and long-text tasks, highlighting its strong generalization and practical effectiveness.