Abstract:A Computer-Aided Design (CAD) model encodes an object in two coupled forms: a parametric construction sequence and its resulting visible geometric shape. During iterative design, adjustments to the geometric shape inevitably require synchronized edits to the underlying parametric sequence, called geometry-driven parametric CAD editing. The task calls for 1) preserving the original sequence's structure, 2) ensuring each edit's semantic validity, and 3) maintaining high shape fidelity to the target shape, all under scarce editing data triplets. We present CADMorph, an iterative plan-generate-verify framework that orchestrates pretrained domain-specific foundation models during inference: a parameter-to-shape (P2S) latent diffusion model and a masked-parameter-prediction (MPP) model. In the planning stage, cross-attention maps from the P2S model pinpoint the segments that need modification and offer editing masks. The MPP model then infills these masks with semantically valid edits in the generation stage. During verification, the P2S model embeds each candidate sequence in shape-latent space, measures its distance to the target shape, and selects the closest one. The three stages leverage the inherent geometric consciousness and design knowledge in pretrained priors, and thus tackle structure preservation, semantic validity, and shape fidelity respectively. Besides, both P2S and MPP models are trained without triplet data, bypassing the data-scarcity bottleneck. CADMorph surpasses GPT-4o and specialized CAD baselines, and supports downstream applications such as iterative editing and reverse-engineering enhancement.
Abstract:Recently, Large Language Models (LLMs) have achieved significant success, prompting increased interest in expanding their generative capabilities beyond general text into domain-specific areas. This study investigates the generation of parametric sequences for computer-aided design (CAD) models using LLMs. This endeavor represents an initial step towards creating parametric 3D shapes with LLMs, as CAD model parameters directly correlate with shapes in three-dimensional space. Despite the formidable generative capacities of LLMs, this task remains challenging, as these models neither encounter parametric sequences during their pretraining phase nor possess direct awareness of 3D structures. To address this, we present CAD-Llama, a framework designed to enhance pretrained LLMs for generating parametric 3D CAD models. Specifically, we develop a hierarchical annotation pipeline and a code-like format to translate parametric 3D CAD command sequences into Structured Parametric CAD Code (SPCC), incorporating hierarchical semantic descriptions. Furthermore, we propose an adaptive pretraining approach utilizing SPCC, followed by an instruction tuning process aligned with CAD-specific guidelines. This methodology aims to equip LLMs with the spatial knowledge inherent in parametric sequences. Experimental results demonstrate that our framework significantly outperforms prior autoregressive methods and existing LLM baselines.
Abstract:Artistic style transfer aims to modify the style of the image while preserving its content. Style transfer using deep learning models has been widely studied since 2015, and most of the applications are focused on specific artists like Van Gogh, Monet, Cezanne. There are few researches and applications on traditional Chinese painting style transfer. In this paper, we will study and leverage different state-of-the-art deep generative models for Chinese painting style transfer and evaluate the performance both qualitatively and quantitatively. In addition, we propose our own algorithm that combines several style transfer models for our task. Specifically, we will transfer two main types of traditional Chinese painting style, known as "Gong-bi" and "Shui-mo" (to modern images like nature objects, portraits and landscapes.