Abstract:Large Language Models (LLMs) are commonly pretrained on vast corpora of text without utilizing contextual metadata such as source, quality, or topic, leading to a context-free learning paradigm. While recent studies suggest that adding metadata like URL information as context (i.e., auxiliary inputs not used in the loss calculation) can improve training efficiency and downstream performance, they offer limited understanding of which types of metadata are truly effective and under what conditions. In this work, we conduct a systematic evaluation and find that not all metadata types contribute equally. Only URL context speeds up training, whereas quality scores and topic/format domain information offer no clear benefit. Furthermore, the improved downstream performances of URL conditioning emerge only when longer prompts are used at inference time. In addition, we demonstrate that context-aware pretraining enables more controllable generation than context-free pretraining, in a classifier-free guidance fashion. Although topic and format metadata do not accelerate training, they are effective for steering outputs, offering human-interpretable control over generation.
Abstract:The increasing adoption of web crawling opt-outs by copyright holders of online content raises critical questions about the impact of data compliance on large language model (LLM) performance. However, little is known about how these restrictions (and the resultant filtering of pretraining datasets) affect the capabilities of models trained using these corpora. In this work, we conceptualize this effect as the $\textit{data compliance gap}$ (DCG), which quantifies the performance difference between models trained on datasets that comply with web crawling opt-outs, and those that do not. We measure the data compliance gap in two settings: pretraining models from scratch and continual pretraining from existing compliant models (simulating a setting where copyrighted data could be integrated later in pretraining). Our experiments with 1.5B models show that, as of January 2025, compliance with web data opt-outs does not degrade general knowledge acquisition (close to 0\% DCG). However, in specialized domains such as biomedical research, excluding major publishers leads to performance declines. These findings suggest that while general-purpose LLMs can be trained to perform equally well using fully open data, performance in specialized domains may benefit from access to high-quality copyrighted sources later in training. Our study provides empirical insights into the long-debated trade-off between data compliance and downstream model performance, informing future discussions on AI training practices and policy decisions.