Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Victor Veitch

Invariant Representation Learning for Treatment Effect Estimation


Nov 24, 2020
Claudia Shi, Victor Veitch, David Blei


  Access Paper or Ask Questions

Underspecification Presents Challenges for Credibility in Modern Machine Learning


Nov 06, 2020
Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley


  Access Paper or Ask Questions

Causal Effects of Linguistic Properties


Oct 24, 2020
Reid Pryzant, Dallas Card, Dan Jurafsky, Victor Veitch, Dhanya Sridhar


  Access Paper or Ask Questions

Valid Causal Inference with (Some) Invalid Instruments


Jun 19, 2020
Jason Hartford, Victor Veitch, Dhanya Sridhar, Kevin Leyton-Brown


  Access Paper or Ask Questions

Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to Unobserved Confounding


Mar 03, 2020
Victor Veitch, Anisha Zaveri

* "Austen" is Jane Austen, in service of the pun in the title 

  Access Paper or Ask Questions

Adapting Neural Networks for the Estimation of Treatment Effects


Jun 05, 2019
Claudia Shi, David M. Blei, Victor Veitch


  Access Paper or Ask Questions

Using Text Embeddings for Causal Inference


May 29, 2019
Victor Veitch, Dhanya Sridhar, David M. Blei


  Access Paper or Ask Questions

Using Embeddings to Correct for Unobserved Confounding


Feb 11, 2019
Victor Veitch, Yixin Wang, David M. Blei


  Access Paper or Ask Questions

Empirical Risk Minimization and Stochastic Gradient Descent for Relational Data


Jun 27, 2018
Victor Veitch, Morgane Austern, Wenda Zhou, David M. Blei, Peter Orbanz

* 23 pages, 1 figure 

  Access Paper or Ask Questions

Compressibility and Generalization in Large-Scale Deep Learning


May 21, 2018
Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, Peter Orbanz

* 14 pages, 1 figure. Minor phrasing changes and better notation for proofs 

  Access Paper or Ask Questions

Exchangeable modelling of relational data: checking sparsity, train-test splitting, and sparse exchangeable Poisson matrix factorization


Dec 06, 2017
Victor Veitch, Ekansh Sharma, Zacharie Naulet, Daniel M. Roy

* 9 pages, 4 figures 

  Access Paper or Ask Questions