Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Figures and Tables:

Abstract:Understanding how semantic meaning is encoded in the representation spaces of large language models is a fundamental problem in interpretability. In this paper, we study the two foundational questions in this area. First, how are categorical concepts, such as {'mammal', 'bird', 'reptile', 'fish'}, represented? Second, how are hierarchical relations between concepts encoded? For example, how is the fact that 'dog' is a kind of 'mammal' encoded? We show how to extend the linear representation hypothesis to answer these questions. We find a remarkably simple structure: simple categorical concepts are represented as simplices, hierarchically related concepts are orthogonal in a sense we make precise, and (in consequence) complex concepts are represented as polytopes constructed from direct sums of simplices, reflecting the hierarchical structure. We validate these theoretical results on the Gemma large language model, estimating representations for 957 hierarchically related concepts using data from WordNet.

Via

Abstract:This paper concerns the problem of aligning samples from large language models to human preferences using best-of-$n$ sampling, where we draw $n$ samples, rank them, and return the best one. We consider two fundamental problems. First: what is the relationship between best-of-$n$ and approaches to alignment that train LLMs to output samples with a high expected reward (e.g., RLHF or DPO)? To answer this, we embed both the best-of-$n$ distribution and the sampling distributions learned by alignment procedures in a common class of tiltings of the base LLM distribution. We then show that, within this class, best-of-$n$ is essentially optimal in terms of the trade-off between win-rate against the base model vs KL distance from the base model. That is, best-of-$n$ is the best choice of alignment distribution if the goal is to maximize win rate. However, best-of-$n$ requires drawing $n$ samples for each inference, a substantial cost. To avoid this, the second problem we consider is how to fine-tune a LLM to mimic the best-of-$n$ sampling distribution. We derive BoNBoN Alignment to achieve this by exploiting the special structure of the best-of-$n$ distribution. Experiments show that BoNBoN alignment yields substantial improvements in producing a model that is preferred to the base policy while minimally affecting off-target aspects.

Via

Figures and Tables:

Abstract:Recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To that end, we introduce a simple latent variable model to abstract and formalize the concept dynamics of the next token prediction. We use this formalism to show that the next token prediction objective (softmax with cross-entropy) and the implicit bias of gradient descent together promote the linear representation of concepts. Experiments show that linear representations emerge when learning from data matching the latent variable model, confirming that this simple structure already suffices to yield linear representations. We additionally confirm some predictions of the theory using the LLaMA-2 large language model, giving evidence that the simplified model yields generalizable insights.

Via

Authors:Zihao Wang, Chirag Nagpal, Jonathan Berant, Jacob Eisenstein, Alex D'Amour, Sanmi Koyejo, Victor Veitch

Abstract:A common approach for aligning language models to human preferences is to first learn a reward model from preference data, and then use this reward model to update the language model. We study two closely related problems that arise in this approach. First, any monotone transformation of the reward model preserves preference ranking; is there a choice that is ``better'' than others? Second, we often wish to align language models to multiple properties: how should we combine multiple reward models? Using a probabilistic interpretation of the alignment procedure, we identify a natural choice for transformation for (the common case of) rewards learned from Bradley-Terry preference models. This derived transformation has two important properties. First, it emphasizes improving poorly-performing outputs, rather than outputs that already score well. This mitigates both underfitting (where some prompts are not improved) and reward hacking (where the model learns to exploit misspecification of the reward model). Second, it enables principled aggregation of rewards by linking summation to logical conjunction: the sum of transformed rewards corresponds to the probability that the output is ``good'' in all measured properties, in a sense we make precise. Experiments aligning language models to be both helpful and harmless using RLHF show substantial improvements over the baseline (non-transformed) approach.

Via

Abstract:Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product.

Via

Abstract:Counterfactual fairness requires that a person would have been classified in the same way by an AI or other algorithmic system if they had a different protected class, such as a different race or gender. This is an intuitive standard, as reflected in the U.S. legal system, but its use is limited because counterfactuals cannot be directly observed in real-world data. On the other hand, group fairness metrics (e.g., demographic parity or equalized odds) are less intuitive but more readily observed. In this paper, we use $\textit{causal context}$ to bridge the gaps between counterfactual fairness, robust prediction, and group fairness. First, we motivate counterfactual fairness by showing that there is not necessarily a fundamental trade-off between fairness and accuracy because, under plausible conditions, the counterfactually fair predictor is in fact accuracy-optimal in an unbiased target distribution. Second, we develop a correspondence between the causal graph of the data-generating process and which, if any, group fairness metrics are equivalent to counterfactual fairness. Third, we show that in three common fairness contexts$\unicode{x2013}$measurement error, selection on label, and selection on predictors$\unicode{x2013}$counterfactual fairness is equivalent to demographic parity, equalized odds, and calibration, respectively. Counterfactual fairness can sometimes be tested by measuring relatively simple group fairness metrics.

Via

Abstract:Machine learning tools often rely on embedding text as vectors of real numbers. In this paper, we study how the semantic structure of language is encoded in the algebraic structure of such embeddings. Specifically, we look at a notion of ``semantic independence'' capturing the idea that, e.g., ``eggplant'' and ``tomato'' are independent given ``vegetable''. Although such examples are intuitive, it is difficult to formalize such a notion of semantic independence. The key observation here is that any sensible formalization should obey a set of so-called independence axioms, and thus any algebraic encoding of this structure should also obey these axioms. This leads us naturally to use partial orthogonality as the relevant algebraic structure. We develop theory and methods that allow us to demonstrate that partial orthogonality does indeed capture semantic independence. Complementary to this, we also introduce the concept of independence preserving embeddings where embeddings preserve the conditional independence structures of a distribution, and we prove the existence of such embeddings and approximations to them.

Via

Figures and Tables:

Abstract:This paper concerns the control of text-guided generative models, where a user provides a natural language prompt and the model generates samples based on this input. Prompting is intuitive, general, and flexible. However, there are significant limitations: prompting can fail in surprising ways, and it is often unclear how to find a prompt that will elicit some desired target behavior. A core difficulty for developing methods to overcome these issues is that failures are know-it-when-you-see-it -- it's hard to fix bugs if you can't state precisely what the model should have done! In this paper, we introduce a formalization of "what the user intended" in terms of latent concepts implicit to the data generating process that the model was trained on. This formalization allows us to identify some fundamental limitations of prompting. We then use the formalism to develop concept algebra to overcome these limitations. Concept algebra is a way of directly manipulating the concepts expressed in the output through algebraic operations on a suitably defined representation of input prompts. We give examples using concept algebra to overcome limitations of prompting, including concept transfer through arithmetic, and concept nullification through projection. Code available at https://github.com/zihao12/concept-algebra.

Via

Figures and Tables:

Abstract:We introduce the Conditional Independence Regression CovariancE (CIRCE), a measure of conditional independence for multivariate continuous-valued variables. CIRCE applies as a regularizer in settings where we wish to learn neural features $\varphi(X)$ of data $X$ to estimate a target $Y$, while being conditionally independent of a distractor $Z$ given $Y$. Both $Z$ and $Y$ are assumed to be continuous-valued but relatively low dimensional, whereas $X$ and its features may be complex and high dimensional. Relevant settings include domain-invariant learning, fairness, and causal learning. The procedure requires just a single ridge regression from $Y$ to kernelized features of $Z$, which can be done in advance. It is then only necessary to enforce independence of $\varphi(X)$ from residuals of this regression, which is possible with attractive estimation properties and consistency guarantees. By contrast, earlier measures of conditional feature dependence require multiple regressions for each step of feature learning, resulting in more severe bias and variance, and greater computational cost. When sufficiently rich features are used, we establish that CIRCE is zero if and only if $\varphi(X) \perp \!\!\! \perp Z \mid Y$. In experiments, we show superior performance to previous methods on challenging benchmarks, including learning conditionally invariant image features.

Via

Figures and Tables:

Abstract:Consider the problem of estimating the causal effect of some attribute of a text document; for example: what effect does writing a polite vs. rude email have on response time? To estimate a causal effect from observational data, we need to adjust for confounding aspects of the text that affect both the treatment and outcome -- e.g., the topic or writing level of the text. These confounding aspects are unknown a priori, so it seems natural to adjust for the entirety of the text (e.g., using a transformer). However, causal identification and estimation procedures rely on the assumption of overlap: for all levels of the adjustment variables, there is randomness leftover so that every unit could have (not) received treatment. Since the treatment here is itself an attribute of the text, it is perfectly determined, and overlap is apparently violated. The purpose of this paper is to show how to handle causal identification and obtain robust causal estimation in the presence of apparent overlap violations. In brief, the idea is to use supervised representation learning to produce a data representation that preserves confounding information while eliminating information that is only predictive of the treatment. This representation then suffices for adjustment and can satisfy overlap. Adapting results on non-parametric estimation, we find that this procedure is robust to conditional outcome misestimation, yielding a low-bias estimator with valid uncertainty quantification under weak conditions. Empirical results show strong improvements in bias and uncertainty quantification relative to the natural baseline.

Via