Abstract:Small Unmanned Aerial Vehicle (UAV) based visual inspections are a more efficient alternative to manual methods for examining civil structural defects, offering safe access to hazardous areas and significant cost savings by reducing labor requirements. However, traditional frame-based cameras, widely used in UAV-based inspections, often struggle to capture defects under low or dynamic lighting conditions. In contrast, Dynamic Vision Sensors (DVS), or event-based cameras, excel in such scenarios by minimizing motion blur, enhancing power efficiency, and maintaining high-quality imaging across diverse lighting conditions without saturation or information loss. Despite these advantages, existing research lacks studies exploring the feasibility of using DVS for detecting civil structural defects.Moreover, there is no dedicated event-based dataset tailored for this purpose. Addressing this gap, this study introduces the first event-based civil infrastructure defect detection dataset, capturing defective surfaces as a spatio-temporal event stream using DVS.In addition to event-based data, the dataset includes grayscale intensity image frames captured simultaneously using an Active Pixel Sensor (APS). Both data types were collected using the DAVIS346 camera, which integrates DVS and APS sensors.The dataset focuses on two types of defects: cracks and spalling, and includes data from both field and laboratory environments. The field dataset comprises 318 recording sequences,documenting 458 distinct cracks and 121 distinct spalling instances.The laboratory dataset includes 362 recording sequences, covering 220 distinct cracks and 308 spalling instances.Four realtime object detection models were evaluated on it to validate the dataset effectiveness.The results demonstrate the dataset robustness in enabling accurate defect detection and classification,even under challenging lighting conditions.
Abstract:The paper introduces a novel framework for safe and autonomous aerial physical interaction in industrial settings. It comprises two main components: a neural network-based target detection system enhanced with edge computing for reduced onboard computational load, and a control barrier function (CBF)-based controller for safe and precise maneuvering. The target detection system is trained on a dataset under challenging visual conditions and evaluated for accuracy across various unseen data with changing lighting conditions. Depth features are utilized for target pose estimation, with the entire detection framework offloaded into low-latency edge computing. The CBF-based controller enables the UAV to converge safely to the target for precise contact. Simulated evaluations of both the controller and target detection are presented, alongside an analysis of real-world detection performance.
Abstract:This paper introduces a novel compliant mechanism combining lightweight and energy dissipation for aerial physical interaction. Weighting 400~g at take-off, the mechanism is actuated in the forward body direction, enabling precise position control for force interaction and various other aerial manipulation tasks. The robotic arm, structured as a closed-loop kinematic chain, employs two deported servomotors. Each joint is actuated with a single tendon for active motion control in compression of the arm at the end-effector. Its elasto-mechanical design reduces weight and provides flexibility, allowing passive-compliant interactions without impacting the motors' integrity. Notably, the arm's damping can be adjusted based on the proposed inner frictional bulges. Experimental applications showcase the aerial system performance in both free-flight and physical interaction. The presented work may open safer applications for \ac{MAV} in real environments subject to perturbations during interaction.