Abstract:This survey serves as a review for the 2025 Event-Based Eye Tracking Challenge organized as part of the 2025 CVPR event-based vision workshop. This challenge focuses on the task of predicting the pupil center by processing event camera recorded eye movement. We review and summarize the innovative methods from teams rank the top in the challenge to advance future event-based eye tracking research. In each method, accuracy, model size, and number of operations are reported. In this survey, we also discuss event-based eye tracking from the perspective of hardware design.
Abstract:Event-based eye tracking has become a pivotal technology for augmented reality and human-computer interaction. Yet, existing methods struggle with real-world challenges such as abrupt eye movements and environmental noise. Building on the efficiency of the Lightweight Spatiotemporal Network-a causal architecture optimized for edge devices-we introduce two key advancements. First, a robust data augmentation pipeline incorporating temporal shift, spatial flip, and event deletion improves model resilience, reducing Euclidean distance error by 12% (1.61 vs. 1.70 baseline) on challenging samples. Second, we propose KnightPupil, a hybrid architecture combining an EfficientNet-B3 backbone for spatial feature extraction, a bidirectional GRU for contextual temporal modeling, and a Linear Time-Varying State-Space Module to adapt to sparse inputs and noise dynamically. Evaluated on the 3ET+ benchmark, our framework achieved 1.61 Euclidean distance on the private test set of the Event-based Eye Tracking Challenge at CVPR 2025, demonstrating its effectiveness for practical deployment in AR/VR systems while providing a foundation for future innovations in neuromorphic vision.
Abstract:The recommendation system plays a vital role in many areas, especially academic fields, to support researchers in submitting and increasing the acceptance of their work through the conference or journal selection process. This study proposes a transformer-based model using transfer learning as an efficient approach for the paper submission recommendation system. By combining essential information (such as the title, the abstract, and the list of keywords) with the aims and scopes of journals, the model can recommend the Top K journals that maximize the acceptance of the paper. Our model had developed through two states: (i) Fine-tuning the pre-trained language model (LM) with a simple contrastive learning framework. We utilized a simple supervised contrastive objective to fine-tune all parameters, encouraging the LM to learn the document representation effectively. (ii) The fine-tuned LM was then trained on different combinations of the features for the downstream task. This study suggests a more advanced method for enhancing the efficiency of the paper submission recommendation system compared to previous approaches when we respectively achieve 0.5173, 0.8097, 0.8862, 0.9496 for Top 1, 3, 5, and 10 accuracies on the test set for combining the title, abstract, and keywords as input features. Incorporating the journals' aims and scopes, our model shows an exciting result by getting 0.5194, 0.8112, 0.8866, and 0.9496 respective to Top 1, 3, 5, and 10.