Abstract:The COVID-19 pandemic has caused massive humanitarian and economic damage. Teams of scientists from a broad range of disciplines have searched for methods to help governments and communities combat the disease. One avenue from the machine learning field which has been explored is the prospect of a digital mass test which can detect COVID-19 from infected individuals' respiratory sounds. We present a summary of the results from the INTERSPEECH 2021 Computational Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS).
Abstract:A biosignal is a signal that can be continuously measured from human bodies, such as respiratory sounds, heart activity (ECG), brain waves (EEG), etc, based on which, machine learning models have been developed with very promising performance for automatic disease detection and health status monitoring. However, dataset shift, i.e., data distribution of inference varies from the distribution of the training, is not uncommon for real biosignal-based applications. To improve the robustness, probabilistic models with uncertainty quantification are adapted to capture how reliable a prediction is. Yet, assessing the quality of the estimated uncertainty remains a challenge. In this work, we propose a framework to evaluate the capability of the estimated uncertainty in capturing different types of biosignal dataset shifts with various degrees. In particular, we use three classification tasks based on respiratory sounds and electrocardiography signals to benchmark five representative uncertainty quantification methods. Extensive experiments show that, although Ensemble and Bayesian models could provide relatively better uncertainty estimations under dataset shifts, all tested models fail to meet the promise in trustworthy prediction and model calibration. Our work paves the way for a comprehensive evaluation for any newly developed biosignal classifiers.
Abstract:Recent work has shown the potential of the use of audio data in screening for COVID-19. However, very little exploration has been done of monitoring disease progression, especially recovery in COVID-19 through audio. Tracking disease progression characteristics and patterns of recovery could lead to tremendous insights and more timely treatment or treatment adjustment, as well as better resources management in health care systems. The primary objective of this study is to explore the potential of longitudinal audio dynamics for COVID-19 monitoring using sequential deep learning techniques, focusing on prediction of disease progression and, especially, recovery trend prediction. We analysed crowdsourced respiratory audio data from 212 individuals over 5 days to 385 days, alongside their self-reported COVID-19 test results. We first explore the benefits of capturing longitudinal dynamics of audio biomarkers for COVID-19 detection. The strong performance, yielding an AUC-ROC of 0.79, sensitivity of 0.75 and specificity of 0.70, supports the effectiveness of the approach compared to methods that do not leverage longitudinal dynamics. We further examine the predicted disease progression trajectory, which displays high consistency with the longitudinal test results with a correlation of 0.76 in the test cohort, and 0.86 in a subset of the test cohort with 12 participants who report disease recovery. Our findings suggest that monitoring COVID-19 progression via longitudinal audio data has enormous potential in the tracking of individuals' disease progression and recovery.
Abstract:PURPOSE: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive warnings and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical workflow analysis up to 91% average precision has been reported for phase recognition on an open data single-center dataset. In this work we investigated the generalizability of phase recognition algorithms in a multi-center setting including more difficult recognition tasks such as surgical action and surgical skill. METHODS: To achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers with a total operation time of 22 hours was created. Labels included annotation of seven surgical phases with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the 2019 Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. Here, 12 teams submitted their machine learning algorithms for recognition of phase, action, instrument and/or skill assessment. RESULTS: F1-scores were achieved for phase recognition between 23.9% and 67.7% (n=9 teams), for instrument presence detection between 38.5% and 63.8% (n=8 teams), but for action recognition only between 21.8% and 23.3% (n=5 teams). The average absolute error for skill assessment was 0.78 (n=1 team). CONCLUSION: Surgical workflow and skill analysis are promising technologies to support the surgical team, but are not solved yet, as shown by our comparison of algorithms. This novel benchmark can be used for comparable evaluation and validation of future work.
Abstract:Fine-grained population distribution data is of great importance for many applications, e.g., urban planning, traffic scheduling, epidemic modeling, and risk control. However, due to the limitations of data collection, including infrastructure density, user privacy, and business security, such fine-grained data is hard to collect and usually, only coarse-grained data is available. Thus, obtaining fine-grained population distribution from coarse-grained distribution becomes an important problem. To tackle this problem, existing methods mainly rely on sufficient fine-grained ground truth for training, which is not often available for the majority of cities. That limits the applications of these methods and brings the necessity to transfer knowledge between data-sufficient source cities to data-scarce target cities. In knowledge transfer scenario, we employ single reference fine-grained ground truth in target city, which is easy to obtain via remote sensing or questionnaire, as the ground truth to inform the large-scale urban structure and support the knowledge transfer in target city. By this approach, we transform the fine-grained population mapping problem into a one-shot transfer learning problem. In this paper, we propose a novel one-shot transfer learning framework PSRNet to transfer spatial-temporal knowledge across cities from the view of network structure, the view of data, and the view of optimization. Experiments on real-life datasets of 4 cities demonstrate that PSRNet has significant advantages over 8 state-of-the-art baselines by reducing RMSE and MAE by more than 25%. Our code and datasets are released in Github (https://github.com/erzhuoshao/PSRNet-CIKM).
Abstract:Recent technology development brings the booming of numerous new Demand-Driven Services (DDS) into urban lives, including ridesharing, on-demand delivery, express systems and warehousing. In DDS, a service loop is an elemental structure, including its service worker, the service providers and corresponding service targets. The service workers should transport either humans or parcels from the providers to the target locations. Various planning tasks within DDS can thus be classified into two individual stages: 1) Dispatching, which is to form service loops from demand/supply distributions, and 2)Routing, which is to decide specific serving orders within the constructed loops. Generating high-quality strategies in both stages is important to develop DDS but faces several challenging. Meanwhile, deep reinforcement learning (DRL) has been developed rapidly in recent years. It is a powerful tool to solve these problems since DRL can learn a parametric model without relying on too many problem-based assumptions and optimize long-term effect by learning sequential decisions. In this survey, we first define DDS, then highlight common applications and important decision/control problems within. For each problem, we comprehensively introduce the existing DRL solutions, and further summarize them in \textit{https://github.com/tsinghua-fib-lab/DDS\_Survey}. We also introduce open simulation environments for development and evaluation of DDS applications. Finally, we analyze remaining challenges and discuss further research opportunities in DRL solutions for DDS.
Abstract:Researchers have been battling with the question of how we can identify Coronavirus disease (COVID-19) cases efficiently, affordably and at scale. Recent work has shown how audio based approaches, which collect respiratory audio data (cough, breathing and voice) can be used for testing, however there is a lack of exploration of how biases and methodological decisions impact these tools' performance in practice. In this paper, we explore the realistic performance of audio-based digital testing of COVID-19. To investigate this, we collected a large crowdsourced respiratory audio dataset through a mobile app, alongside recent COVID-19 test result and symptoms intended as a ground truth. Within the collected dataset, we selected 5,240 samples from 2,478 participants and split them into different participant-independent sets for model development and validation. Among these, we controlled for potential confounding factors (such as demographics and language). The unbiased model takes features extracted from breathing, coughs, and voice signals as predictors and yields an AUC-ROC of 0.71 (95\% CI: 0.65$-$0.77). We further explore different unbalanced distributions to show how biases and participant splits affect performance. Finally, we discuss how the realistic model presented could be integrated in clinical practice to realize continuous, ubiquitous, sustainable and affordable testing at population scale.
Abstract:Recently, sound-based COVID-19 detection studies have shown great promise to achieve scalable and prompt digital pre-screening. However, there are still two unsolved issues hindering the practice. First, collected datasets for model training are often imbalanced, with a considerably smaller proportion of users tested positive, making it harder to learn representative and robust features. Second, deep learning models are generally overconfident in their predictions. Clinically, false predictions aggravate healthcare costs. Estimation of the uncertainty of screening would aid this. To handle these issues, we propose an ensemble framework where multiple deep learning models for sound-based COVID-19 detection are developed from different but balanced subsets from original data. As such, data are utilized more effectively compared to traditional up-sampling and down-sampling approaches: an AUC of 0.74 with a sensitivity of 0.68 and a specificity of 0.69 is achieved. Simultaneously, we estimate uncertainty from the disagreement across multiple models. It is shown that false predictions often yield higher uncertainty, enabling us to suggest the users with certainty higher than a threshold to repeat the audio test on their phones or to take clinical tests if digital diagnosis still fails. This study paves the way for a more robust sound-based COVID-19 automated screening system.
Abstract:The INTERSPEECH 2021 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the COVID-19 Cough and COVID-19 Speech Sub-Challenges, a binary classification on COVID-19 infection has to be made based on coughing sounds and speech; in the Escalation SubChallenge, a three-way assessment of the level of escalation in a dialogue is featured; and in the Primates Sub-Challenge, four species vs background need to be classified. We describe the Sub-Challenges, baseline feature extraction, and classifiers based on the 'usual' COMPARE and BoAW features as well as deep unsupervised representation learning using the AuDeep toolkit, and deep feature extraction from pre-trained CNNs using the Deep Spectrum toolkit; in addition, we add deep end-to-end sequential modelling, and partially linguistic analysis.
Abstract:The development of fast and accurate screening tools, which could facilitate testing and prevent more costly clinical tests, is key to the current pandemic of COVID-19. In this context, some initial work shows promise in detecting diagnostic signals of COVID-19 from audio sounds. In this paper, we propose a voice-based framework to automatically detect individuals who have tested positive for COVID-19. We evaluate the performance of the proposed framework on a subset of data crowdsourced from our app, containing 828 samples from 343 participants. By combining voice signals and reported symptoms, an AUC of $0.79$ has been attained, with a sensitivity of $0.68$ and a specificity of $0.82$. We hope that this study opens the door to rapid, low-cost, and convenient pre-screening tools to automatically detect the disease.