Abstract:Parameter-efficient fine-tuning (PEFT) methods are increasingly used with pre-trained language models (PLMs) for continual learning (CL). These methods involve training a PEFT module for each new task and using similarity-based selection to route modules during inference. However, they face two major limitations: 1) interference with already learned modules and 2) suboptimal routing when composing modules. In this paper, we introduce a method that isolates the training of PEFT modules for task specialization. Then, before evaluation, it learns to compose the previously learned modules by training a router that leverages samples from a small memory. We evaluate our method in two CL setups using several benchmarks. Our results show that our method provides a better composition of PEFT modules, leading to better generalization and performance compared to previous methods.
Abstract:Zero-shot classification capabilities naturally arise in models trained within a vision-language contrastive framework. Despite their classification prowess, these models struggle in dense tasks like zero-shot open-vocabulary segmentation. This deficiency is often attributed to the absence of localization cues in captions and the intertwined nature of the learning process, which encompasses both image representation learning and cross-modality alignment. To tackle these issues, we propose SimZSS, a Simple framework for open-vocabulary Zero-Shot Segmentation. The method is founded on two key principles: i) leveraging frozen vision-only models that exhibit spatial awareness while exclusively aligning the text encoder and ii) exploiting the discrete nature of text and linguistic knowledge to pinpoint local concepts within captions. By capitalizing on the quality of the visual representations, our method requires only image-caption pairs datasets and adapts to both small curated and large-scale noisy datasets. When trained on COCO Captions across 8 GPUs, SimZSS achieves state-of-the-art results on 7 out of 8 benchmark datasets in less than 15 minutes.
Abstract:Catastrophic forgetting poses a significant challenge in continual learning, where models often forget previous tasks when trained on new data. Our empirical analysis reveals a strong correlation between catastrophic forgetting and the learning speed of examples: examples learned early are rarely forgotten, while those learned later are more susceptible to forgetting. We demonstrate that replay-based continual learning methods can leverage this phenomenon by focusing on mid-learned examples for rehearsal. We introduce Goldilocks, a novel replay buffer sampling method that filters out examples learned too quickly or too slowly, keeping those learned at an intermediate speed. Goldilocks improves existing continual learning algorithms, leading to state-of-the-art performance across several image classification tasks.
Abstract:Text-based semantic image editing assumes the manipulation of an image using a natural language instruction. Although recent works are capable of generating creative and qualitative images, the problem is still mostly approached as a black box sensitive to generating unexpected outputs. Therefore, we propose a novel model to enhance the text-based control of an image editor by explicitly reasoning about which parts of the image to alter or preserve. It relies on word alignments between a description of the original source image and the instruction that reflects the needed updates, and the input image. The proposed Diffusion Masking with word Alignments (DM-Align) allows the editing of an image in a transparent and explainable way. It is evaluated on a subset of the Bison dataset and a self-defined dataset dubbed Dream. When comparing to state-of-the-art baselines, quantitative and qualitative results show that DM-Align has superior performance in image editing conditioned on language instructions, well preserves the background of the image and can better cope with long text instructions.
Abstract:Current diffusion models create photorealistic images given a text prompt as input but struggle to correctly bind attributes mentioned in the text to the right objects in the image. This is evidenced by our novel image-graph alignment model called EPViT (Edge Prediction Vision Transformer) for the evaluation of image-text alignment. To alleviate the above problem, we propose focused cross-attention (FCA) that controls the visual attention maps by syntactic constraints found in the input sentence. Additionally, the syntax structure of the prompt helps to disentangle the multimodal CLIP embeddings that are commonly used in T2I generation. The resulting DisCLIP embeddings and FCA are easily integrated in state-of-the-art diffusion models without additional training of these models. We show substantial improvements in T2I generation and especially its attribute-object binding on several datasets.\footnote{Code and data will be made available upon acceptance.
Abstract:Inverse rendering aims to reconstruct the scene properties of objects solely from multiview images. However, it is an ill-posed problem prone to producing ambiguous estimations deviating from physically accurate representations. In this paper, we utilize Neural Microfacet Fields (NMF), a state-of-the-art neural inverse rendering method to illustrate the inherent ambiguity. We propose an evaluation framework to assess the degree of compensation or interaction between the estimated scene properties, aiming to explore the mechanisms behind this ill-posed problem and potential mitigation strategies. Specifically, we introduce artificial perturbations to one scene property and examine how adjusting another property can compensate for these perturbations. To facilitate such experiments, we introduce a disentangled NMF where material properties are independent. The experimental findings underscore the intrinsic ambiguity present in neural inverse rendering and highlight the importance of providing additional guidance through geometry, material, and illumination priors.
Abstract:Human-like autonomous driving controllers have the potential to enhance passenger perception of autonomous vehicles. This paper proposes DriViDOC: a model for Driving from Vision through Differentiable Optimal Control, and its application to learn personalized autonomous driving controllers from human demonstrations. DriViDOC combines the automatic inference of relevant features from camera frames with the properties of nonlinear model predictive control (NMPC), such as constraint satisfaction. Our approach leverages the differentiability of parametric NMPC, allowing for end-to-end learning of the driving model from images to control. The model is trained on an offline dataset comprising various driving styles collected on a motion-base driving simulator. During online testing, the model demonstrates successful imitation of different driving styles, and the interpreted NMPC parameters provide insights into the achievement of specific driving behaviors. Our experimental results show that DriViDOC outperforms other methods involving NMPC and neural networks, exhibiting an average improvement of 20% in imitation scores.
Abstract:In recent years, diffusion models have made remarkable strides in text-to-video generation, sparking a quest for enhanced control over video outputs to more accurately reflect user intentions. Traditional efforts predominantly focus on employing either semantic cues, like images or depth maps, or motion-based conditions, like moving sketches or object bounding boxes. Semantic inputs offer a rich scene context but lack detailed motion specificity; conversely, motion inputs provide precise trajectory information but miss the broader semantic narrative. For the first time, we integrate both semantic and motion cues within a diffusion model for video generation, as demonstrated in Fig 1. To this end, we introduce the Scene and Motion Conditional Diffusion (SMCD), a novel methodology for managing multimodal inputs. It incorporates a recognized motion conditioning module and investigates various approaches to integrate scene conditions, promoting synergy between different modalities. For model training, we separate the conditions for the two modalities, introducing a two-stage training pipeline. Experimental results demonstrate that our design significantly enhances video quality, motion precision, and semantic coherence.
Abstract:Mainstream parameter-efficient fine-tuning (PEFT) methods, such as LoRA or Adapter, project a model's hidden states to a lower dimension, allowing pre-trained models to adapt to new data through this low-rank bottleneck. However, PEFT tasks involving multiple modalities, like vision-language (VL) tasks, require not only adaptation to new data but also learning the relationship between different modalities. Targeting at VL PEFT tasks, we propose a family of operations, called routing functions, to enhance VL alignment in the low-rank bottlenecks. The routing functions adopt linear operations and do not introduce new trainable parameters. In-depth analyses are conducted to study their behavior. In various VL PEFT settings, the routing functions significantly improve performance of the original PEFT methods, achieving over 20% improvement on VQAv2 ($\text{RoBERTa}_{\text{large}}$+ViT-L/16) and 30% on COCO Captioning (GPT2-medium+ViT-L/16). Also when fine-tuning a pre-trained multimodal model such as CLIP-BART, we observe smaller but consistent improvements across a range of VL PEFT tasks.
Abstract:Last couple of years have witnessed a tremendous progress in self-supervised learning (SSL), the success of which can be attributed to the introduction of useful inductive biases in the learning process to learn meaningful visual representations while avoiding collapse. These inductive biases and constraints manifest themselves in the form of different optimization formulations in the SSL techniques, e.g. by utilizing negative examples in a contrastive formulation, or exponential moving average and predictor in BYOL and SimSiam. In this paper, we provide a framework to explain the stability mechanism of these different SSL techniques: i) we discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO; ii) we provide an argument that despite different formulations these methods implicitly optimize a similar objective function, i.e. minimizing the magnitude of the expected representation over all data samples, or the mean of the data distribution, while maximizing the magnitude of the expected representation of individual samples over different data augmentations; iii) we provide mathematical and empirical evidence to support our framework. We formulate different hypotheses and test them using the Imagenet100 dataset.