Alert button
Picture for Thomas Keck

Thomas Keck

Alert button

Hierarchical Reinforcement Learning in Complex 3D Environments

Add code
Bookmark button
Alert button
Feb 28, 2023
Bernardo Avila Pires, Feryal Behbahani, Hubert Soyer, Kyriacos Nikiforou, Thomas Keck, Satinder Singh

Figure 1 for Hierarchical Reinforcement Learning in Complex 3D Environments
Figure 2 for Hierarchical Reinforcement Learning in Complex 3D Environments
Figure 3 for Hierarchical Reinforcement Learning in Complex 3D Environments
Figure 4 for Hierarchical Reinforcement Learning in Complex 3D Environments
Viaarxiv icon

Large-scale graph representation learning with very deep GNNs and self-supervision

Add code
Bookmark button
Alert button
Jul 20, 2021
Ravichandra Addanki, Peter W. Battaglia, David Budden, Andreea Deac, Jonathan Godwin, Thomas Keck, Wai Lok Sibon Li, Alvaro Sanchez-Gonzalez, Jacklynn Stott, Shantanu Thakoor, Petar Veličković

Figure 1 for Large-scale graph representation learning with very deep GNNs and self-supervision
Figure 2 for Large-scale graph representation learning with very deep GNNs and self-supervision
Figure 3 for Large-scale graph representation learning with very deep GNNs and self-supervision
Viaarxiv icon

Podracer architectures for scalable Reinforcement Learning

Add code
Bookmark button
Alert button
Apr 13, 2021
Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio Viola, Hado van Hasselt

Figure 1 for Podracer architectures for scalable Reinforcement Learning
Figure 2 for Podracer architectures for scalable Reinforcement Learning
Figure 3 for Podracer architectures for scalable Reinforcement Learning
Figure 4 for Podracer architectures for scalable Reinforcement Learning
Viaarxiv icon

Solving Mixed Integer Programs Using Neural Networks

Add code
Bookmark button
Alert button
Dec 23, 2020
Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan O'Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol Vinyals, Yori Zwols

Figure 1 for Solving Mixed Integer Programs Using Neural Networks
Figure 2 for Solving Mixed Integer Programs Using Neural Networks
Figure 3 for Solving Mixed Integer Programs Using Neural Networks
Figure 4 for Solving Mixed Integer Programs Using Neural Networks
Viaarxiv icon

Machine Learning in High Energy Physics Community White Paper

Add code
Bookmark button
Alert button
Jul 08, 2018
Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

Figure 1 for Machine Learning in High Energy Physics Community White Paper
Figure 2 for Machine Learning in High Energy Physics Community White Paper
Figure 3 for Machine Learning in High Energy Physics Community White Paper
Viaarxiv icon

FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradient-boosted decision trees for multivariate classification

Add code
Bookmark button
Alert button
Sep 20, 2016
Thomas Keck

Figure 1 for FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradient-boosted decision trees for multivariate classification
Figure 2 for FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradient-boosted decision trees for multivariate classification
Figure 3 for FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradient-boosted decision trees for multivariate classification
Figure 4 for FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradient-boosted decision trees for multivariate classification
Viaarxiv icon