Abstract:This paper presents JARVIS, a novel multi-agent framework that leverages Large Language Models (LLMs) and domain expertise to generate high-quality scripts for specialized Electronic Design Automation (EDA) tasks. By combining a domain-specific LLM trained with synthetically generated data, a custom compiler for structural verification, rule enforcement, code fixing capabilities, and advanced retrieval mechanisms, our approach achieves significant improvements over state-of-the-art domain-specific models. Our framework addresses the challenges of data scarcity and hallucination errors in LLMs, demonstrating the potential of LLMs in specialized engineering domains. We evaluate our framework on multiple benchmarks and show that it outperforms existing models in terms of accuracy and reliability. Our work sets a new precedent for the application of LLMs in EDA and paves the way for future innovations in this field.
Abstract:This paper presents a comparative analysis of total cost of ownership (TCO) and performance between domain-adapted large language models (LLM) and state-of-the-art (SoTA) LLMs , with a particular emphasis on tasks related to coding assistance for chip design. We examine the TCO and performance metrics of a domain-adaptive LLM, ChipNeMo, against two leading LLMs, Claude 3 Opus and ChatGPT-4 Turbo, to assess their efficacy in chip design coding generation. Through a detailed evaluation of the accuracy of the model, training methodologies, and operational expenditures, this study aims to provide stakeholders with critical information to select the most economically viable and performance-efficient solutions for their specific needs. Our results underscore the benefits of employing domain-adapted models, such as ChipNeMo, that demonstrate improved performance at significantly reduced costs compared to their general-purpose counterparts. In particular, we reveal the potential of domain-adapted LLMs to decrease TCO by approximately 90%-95%, with the cost advantages becoming increasingly evident as the deployment scale expands. With expansion of deployment, the cost benefits of ChipNeMo become more pronounced, making domain-adaptive LLMs an attractive option for organizations with substantial coding needs supported by LLMs
Abstract:ChipNeMo aims to explore the applications of large language models (LLMs) for industrial chip design. Instead of directly deploying off-the-shelf commercial or open-source LLMs, we instead adopt the following domain adaptation techniques: custom tokenizers, domain-adaptive continued pretraining, supervised fine-tuning (SFT) with domain-specific instructions, and domain-adapted retrieval models. We evaluate these methods on three selected LLM applications for chip design: an engineering assistant chatbot, EDA script generation, and bug summarization and analysis. Our results show that these domain adaptation techniques enable significant LLM performance improvements over general-purpose base models across the three evaluated applications, enabling up to 5x model size reduction with similar or better performance on a range of design tasks. Our findings also indicate that there's still room for improvement between our current results and ideal outcomes. We believe that further investigation of domain-adapted LLM approaches will help close this gap in the future.