Abstract:We present "DistML.js", a library designed for training and inference of machine learning models within web browsers. Not only does DistML.js facilitate model training on local devices, but it also supports distributed learning through communication with servers. Its design and define-by-run API for deep learning model construction resemble PyTorch, thereby reducing the learning curve for prototyping. Matrix computations involved in model training and inference are executed on the backend utilizing WebGL, enabling high-speed calculations. We provide a comprehensive explanation of DistML.js's design, API, and implementation, alongside practical applications including data parallelism in learning. The source code is publicly available at https://github.com/mil-tokyo/distmljs.
Abstract:We propose a simple yet effective pipeline for stylizing a 3D scene, harnessing the power of 2D image diffusion models. Given a NeRF model reconstructed from a set of multi-view images, we perform 3D style transfer by refining the source NeRF model using stylized images generated by a style-aligned image-to-image diffusion model. Given a target style prompt, we first generate perceptually similar multi-view images by leveraging a depth-conditioned diffusion model with an attention-sharing mechanism. Next, based on the stylized multi-view images, we propose to guide the style transfer process with the sliced Wasserstein loss based on the feature maps extracted from a pre-trained CNN model. Our pipeline consists of decoupled steps, allowing users to test various prompt ideas and preview the stylized 3D result before proceeding to the NeRF fine-tuning stage. We demonstrate that our method can transfer diverse artistic styles to real-world 3D scenes with competitive quality.
Abstract:Recent studies on online reinforcement learning (RL) have demonstrated the advantages of learning multiple behaviors from a single task, as in the case of few-shot adaptation to a new environment. Although this approach is expected to yield similar benefits in offline RL, appropriate methods for learning multiple solutions have not been fully investigated in previous studies. In this study, we therefore addressed the problem of finding multiple solutions from a single task in offline RL. We propose algorithms that can learn multiple solutions in offline RL, and empirically investigate their performance. Our experimental results show that the proposed algorithm learns multiple qualitatively and quantitatively distinctive solutions in offline RL.
Abstract:In Extreme Q-learning (XQL), Gumbel Regression is performed with an assumed Gumbel distribution for the error distribution. This allows learning of the value function without sampling out-of-distribution actions and has shown excellent performance mainly in Offline RL. However, issues remained, including the exponential term in the loss function causing instability and the potential for an error distribution diverging from the Gumbel distribution. Therefore, we propose Maclaurin Expanded Extreme Q-learning to enhance stability. In this method, applying Maclaurin expansion to the loss function in XQL enhances stability against large errors. It also allows adjusting the error distribution assumption from normal to Gumbel based on the expansion order. Our method significantly stabilizes learning in Online RL tasks from DM Control, where XQL was previously unstable. Additionally, it improves performance in several Offline RL tasks from D4RL, where XQL already showed excellent results.
Abstract:The generation of 3D scenes from user-specified conditions offers a promising avenue for alleviating the production burden in 3D applications. Previous studies required significant effort to realize the desired scene, owing to limited control conditions. We propose a method for controlling and generating 3D scenes under multimodal conditions using partial images, layout information represented in the top view, and text prompts. Combining these conditions to generate a 3D scene involves the following significant difficulties: (1) the creation of large datasets, (2) reflection on the interaction of multimodal conditions, and (3) domain dependence of the layout conditions. We decompose the process of 3D scene generation into 2D image generation from the given conditions and 3D scene generation from 2D images. 2D image generation is achieved by fine-tuning a pretrained text-to-image model with a small artificial dataset of partial images and layouts, and 3D scene generation is achieved by layout-conditioned depth estimation and neural radiance fields (NeRF), thereby avoiding the creation of large datasets. The use of a common representation of spatial information using 360-degree images allows for the consideration of multimodal condition interactions and reduces the domain dependence of the layout control. The experimental results qualitatively and quantitatively demonstrated that the proposed method can generate 3D scenes in diverse domains, from indoor to outdoor, according to multimodal conditions.
Abstract:In this work, we tackle the limitations of current LiDAR-based 3D object detection systems, which are hindered by a restricted class vocabulary and the high costs associated with annotating new object classes. Our exploration of open-vocabulary (OV) learning in urban environments aims to capture novel instances using pre-trained vision-language models (VLMs) with multi-sensor data. We design and benchmark a set of four potential solutions as baselines, categorizing them into either top-down or bottom-up approaches based on their input data strategies. While effective, these methods exhibit certain limitations, such as missing novel objects in 3D box estimation or applying rigorous priors, leading to biases towards objects near the camera or of rectangular geometries. To overcome these limitations, we introduce a universal \textsc{Find n' Propagate} approach for 3D OV tasks, aimed at maximizing the recall of novel objects and propagating this detection capability to more distant areas thereby progressively capturing more. In particular, we utilize a greedy box seeker to search against 3D novel boxes of varying orientations and depth in each generated frustum and ensure the reliability of newly identified boxes by cross alignment and density ranker. Additionally, the inherent bias towards camera-proximal objects is alleviated by the proposed remote simulator, which randomly diversifies pseudo-labeled novel instances in the self-training process, combined with the fusion of base samples in the memory bank. Extensive experiments demonstrate a 53% improvement in novel recall across diverse OV settings, VLMs, and 3D detectors. Notably, we achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes. The source code is made available in the supplementary material.
Abstract:The success of models operating on tokenized data has led to an increased demand for effective tokenization methods, particularly when applied to vision or auditory tasks, which inherently involve non-discrete data. One of the most popular tokenization methods is Vector Quantization (VQ), a key component of several recent state-of-the-art methods across various domains. Typically, a VQ Variational Autoencoder (VQVAE) is trained to transform data to and from its tokenized representation. However, since the VQVAE is trained with a reconstruction objective, there is no constraint for the embeddings to be well disentangled, a crucial aspect for using them in discriminative tasks. Recently, several works have demonstrated the benefits of utilizing hyperbolic spaces for representation learning. Hyperbolic spaces induce compact latent representations due to their exponential volume growth and inherent ability to model hierarchical and structured data. In this work, we explore the use of hyperbolic spaces for vector quantization (HyperVQ), formulating the VQ operation as a hyperbolic Multinomial Logistic Regression (MLR) problem, in contrast to the Euclidean K-Means clustering used in VQVAE. Through extensive experiments, we demonstrate that hyperVQ performs comparably in reconstruction and generative tasks while outperforming VQ in discriminative tasks and learning a highly disentangled latent space.
Abstract:In deep reinforcement learning, estimating the value function to evaluate the quality of states and actions is essential. The value function is often trained using the least squares method, which implicitly assumes a Gaussian error distribution. However, a recent study suggested that the error distribution for training the value function is often skewed because of the properties of the Bellman operator, and violates the implicit assumption of normal error distribution in the least squares method. To address this, we proposed a method called Symmetric Q-learning, in which the synthetic noise generated from a zero-mean distribution is added to the target values to generate a Gaussian error distribution. We evaluated the proposed method on continuous control benchmark tasks in MuJoCo. It improved the sample efficiency of a state-of-the-art reinforcement learning method by reducing the skewness of the error distribution.
Abstract:Autonomous assistance of people with motor impairments is one of the most promising applications of autonomous robotic systems. Recent studies have reported encouraging results using deep reinforcement learning (RL) in the healthcare domain. Previous studies showed that assistive tasks can be formulated as multi-agent RL, wherein there are two agents: a caregiver and a care-receiver. However, policies trained in multi-agent RL are often sensitive to the policies of other agents. In such a case, a trained caregiver's policy may not work for different care-receivers. To alleviate this issue, we propose a framework that learns a robust caregiver's policy by training it for diverse care-receiver responses. In our framework, diverse care-receiver responses are autonomously learned through trials and errors. In addition, to robustify the care-giver's policy, we propose a strategy for sampling a care-receiver's response in an adversarial manner during the training. We evaluated the proposed method using tasks in an Assistive Gym. We demonstrate that policies trained with a popular deep RL method are vulnerable to changes in policies of other agents and that the proposed framework improves the robustness against such changes.
Abstract:Head avatar reconstruction, crucial for applications in virtual reality, online meetings, gaming, and film industries, has garnered substantial attention within the computer vision community. The fundamental objective of this field is to faithfully recreate the head avatar and precisely control expressions and postures. Existing methods, categorized into 2D-based warping, mesh-based, and neural rendering approaches, present challenges in maintaining multi-view consistency, incorporating non-facial information, and generalizing to new identities. In this paper, we propose a framework named GPAvatar that reconstructs 3D head avatars from one or several images in a single forward pass. The key idea of this work is to introduce a dynamic point-based expression field driven by a point cloud to precisely and effectively capture expressions. Furthermore, we use a Multi Tri-planes Attention (MTA) fusion module in the tri-planes canonical field to leverage information from multiple input images. The proposed method achieves faithful identity reconstruction, precise expression control, and multi-view consistency, demonstrating promising results for free-viewpoint rendering and novel view synthesis.