Abstract:Building extraction from remote sensing images is a challenging task due to the complex structure variations of the buildings. Existing methods employ convolutional or self-attention blocks to capture the multi-scale features in the segmentation models, while the inherent gap of the feature pyramids and insufficient global-local feature integration leads to inaccurate, ambiguous extraction results. To address this issue, in this paper, we present an Uncertainty-Aggregated Global-Local Fusion Network (UAGLNet), which is capable to exploit high-quality global-local visual semantics under the guidance of uncertainty modeling. Specifically, we propose a novel cooperative encoder, which adopts hybrid CNN and transformer layers at different stages to capture the local and global visual semantics, respectively. An intermediate cooperative interaction block (CIB) is designed to narrow the gap between the local and global features when the network becomes deeper. Afterwards, we propose a Global-Local Fusion (GLF) module to complementarily fuse the global and local representations. Moreover, to mitigate the segmentation ambiguity in uncertain regions, we propose an Uncertainty-Aggregated Decoder (UAD) to explicitly estimate the pixel-wise uncertainty to enhance the segmentation accuracy. Extensive experiments demonstrate that our method achieves superior performance to other state-of-the-art methods. Our code is available at https://github.com/Dstate/UAGLNet




Abstract:A speech separation task can be roughly divided into audio-only separation and audio-visual separation. In order to make speech separation technology applied in the real scenario of the disabled, this paper presents an extended speech separation problem which refers in particular to sign language assisted speech separation. However, most existing datasets for speech separation are audios and videos which contain audio and/or visual modalities. To address the extended speech separation problem, we introduce a large-scale dataset named Sign Language News Speech (SLNSpeech) dataset in which three modalities of audio, visual, and sign language are coexisted. Then, we design a general deep learning network for the self-supervised learning of three modalities, particularly, using sign language embeddings together with audio or audio-visual information for better solving the speech separation task. Specifically, we use 3D residual convolutional network to extract sign language features and use pretrained VGGNet model to exact visual features. After that, an improved U-Net with skip connections in feature extraction stage is applied for learning the embeddings among the mixed spectrogram transformed from source audios, the sign language features and visual features. Experiments results show that, besides visual modality, sign language modality can also be used alone to supervise speech separation task. Moreover, we also show the effectiveness of sign language assisted speech separation when the visual modality is disturbed. Source code will be released in http://cheertt.top/homepage/