Abstract:The self-attention mechanism, while foundational to modern Transformer architectures, suffers from a critical inefficiency: it frequently allocates substantial attention to redundant or noisy context. Differential Attention addressed this by using subtractive attention maps for signal and noise, but its required balanced head allocation imposes rigid constraints on representational flexibility and scalability. To overcome this, we propose Grouped Differential Attention (GDA), a novel approach that introduces unbalanced head allocation between signal-preserving and noise-control groups. GDA significantly enhances signal focus by strategically assigning more heads to signal extraction and fewer to noise-control, stabilizing the latter through controlled repetition (akin to GQA). This design achieves stronger signal fidelity with minimal computational overhead. We further extend this principle to group-differentiated growth, a scalable strategy that selectively replicates only the signal-focused heads, thereby ensuring efficient capacity expansion. Through large-scale pretraining and continual training experiments, we demonstrate that moderate imbalance ratios in GDA yield substantial improvements in generalization and stability compared to symmetric baselines. Our results collectively establish that ratio-aware head allocation and selective expansion offer an effective and practical path toward designing scalable, computation-efficient Transformer architectures.
Abstract:We introduce Llama-3-Motif, a language model consisting of 102 billion parameters, specifically designed to enhance Korean capabilities while retaining strong performance in English. Developed on the Llama 3 architecture, Llama-3-Motif employs advanced training techniques, including LlamaPro and Masked Structure Growth, to effectively scale the model without altering its core Transformer architecture. Using the MoAI platform for efficient training across hyperscale GPU clusters, we optimized Llama-3-Motif using a carefully curated dataset that maintains a balanced ratio of Korean and English data. Llama-3-Motif shows decent performance on Korean-specific benchmarks, outperforming existing models and achieving results comparable to GPT-4.
Abstract:We propose Anti-regularization (AR), which adds a sign-reversed reward term to the loss to intentionally increase model expressivity in the small-sample regime, and then attenuates this intervention with a power-law decay as the sample size grows. We formalize spectral safety and trust-region conditions, and design a lightweight stability safeguard that combines a projection operator with gradient clipping, ensuring stable intervention under stated assumptions. Our analysis spans linear smoothers and the Neural Tangent Kernel (NTK) regime, providing practical guidance on selecting the decay exponent by balancing empirical risk against variance. Empirically, AR reduces underfitting while preserving generalization and improving calibration in both regression and classification. Ablation studies confirm that the decay schedule and the stability safeguard are critical to preventing overfitting and numerical instability. We further examine a degrees-of-freedom targeting schedule that keeps per-sample complexity approximately constant. AR is simple to implement and reproducible, integrating cleanly into standard empirical risk minimization pipelines. It enables robust learning in data- and resource-constrained settings by intervening only when beneficial and fading away when unnecessary.