Abstract:Recent studies in medical question answering (Medical QA) have actively explored the integration of large language models (LLMs) with biomedical knowledge graphs (KGs) to improve factual accuracy. However, most existing approaches still rely on traversing the entire KG or performing large-scale retrieval, which introduces substantial noise and leads to unstable multi-hop reasoning. We argue that the core challenge lies not in expanding access to knowledge, but in identifying and reasoning over the appropriate subset of evidence for each query. ReGraM is a region-first knowledge graph reasoning framework that addresses this challenge by constructing a query-aligned subgraph and performing stepwise reasoning constrained to this localized region under multiple evidence aware modes. By focusing inference on only the most relevant portion of the KG, ReGraM departs from the assumption that all relations are equally useful an assumption that rarely holds in domain-specific medical settings. Experiments on seven medical QA benchmarks demonstrate that ReGraM consistently outperforms a strong baseline (KGARevion), achieving an 8.04% absolute accuracy gain on MCQ, a 4.50% gain on SAQ, and a 42.9% reduction in hallucination rate. Ablation and qualitative analyses further show that aligning region construction with hop-wise reasoning is the primary driver of these improvements. Overall, our results highlight region-first KG reasoning as an effective paradigm for improving factual accuracy and consistency in medical QA.
Abstract:Recent LLMs increasingly integrate reasoning mechanisms like Chain-of-Thought (CoT). However, this explicit reasoning exposes a new attack surface for inference-time backdoors, which inject malicious reasoning paths without altering model parameters. Because these attacks generate linguistically coherent paths, they effectively evade conventional detection. To address this, we propose STAR (State-Transition Amplification Ratio), a framework that detects backdoors by analyzing output probability shifts. STAR exploits the statistical discrepancy where a malicious input-induced path exhibits high posterior probability despite a low prior probability in the model's general knowledge. We quantify this state-transition amplification and employ the CUSUM algorithm to detect persistent anomalies. Experiments across diverse models (8B-70B) and five benchmark datasets demonstrate that STAR exhibits robust generalization capabilities, consistently achieving near-perfect performance (AUROC $\approx$ 1.0) with approximately $42\times$ greater efficiency than existing baselines. Furthermore, the framework proves robust against adaptive attacks attempting to bypass detection.
Abstract:The advent of convenient and efficient fully unmanned stores equipped with artificial intelligence-based automated checkout systems marks a new era in retail. However, these systems have inherent artificial intelligence security vulnerabilities, which are exploited via adversarial patch attacks, particularly in physical environments. This study demonstrated that adversarial patches can severely disrupt object detection models used in unmanned stores, leading to issues such as theft, inventory discrepancies, and interference. We investigated three types of adversarial patch attacks -- Hiding, Creating, and Altering attacks -- and highlighted their effectiveness. We also introduce the novel color histogram similarity loss function by leveraging attacker knowledge of the color information of a target class object. Besides the traditional confusion-matrix-based attack success rate, we introduce a new bounding-boxes-based metric to analyze the practical impact of these attacks. Starting with attacks on object detection models trained on snack and fruit datasets in a digital environment, we evaluated the effectiveness of adversarial patches in a physical testbed that mimicked a real unmanned store with RGB cameras and realistic conditions. Furthermore, we assessed the robustness of these attacks in black-box scenarios, demonstrating that shadow attacks can enhance success rates of attacks even without direct access to model parameters. Our study underscores the necessity for robust defense strategies to protect unmanned stores from adversarial threats. Highlighting the limitations of the current defense mechanisms in real-time detection systems and discussing various proactive measures, we provide insights into improving the robustness of object detection models and fortifying unmanned retail environments against these attacks.