Abstract:Forgetting presents a significant challenge during incremental training, making it particularly demanding for contemporary AI systems to assimilate new knowledge in streaming data environments. To address this issue, most approaches in Continual Learning (CL) rely on the replay of a restricted buffer of past data. However, the presence of noise in real-world scenarios, where human annotation is constrained by time limitations or where data is automatically gathered from the web, frequently renders these strategies vulnerable. In this study, we address the problem of CL under Noisy Labels (CLN) by introducing Alternate Experience Replay (AER), which takes advantage of forgetting to maintain a clear distinction between clean, complex, and noisy samples in the memory buffer. The idea is that complex or mislabeled examples, which hardly fit the previously learned data distribution, are most likely to be forgotten. To grasp the benefits of such a separation, we equip AER with Asymmetric Balanced Sampling (ABS): a new sample selection strategy that prioritizes purity on the current task while retaining relevant samples from the past. Through extensive computational comparisons, we demonstrate the effectiveness of our approach in terms of both accuracy and purity of the obtained buffer, resulting in a remarkable average gain of 4.71% points in accuracy with respect to existing loss-based purification strategies. Code is available at https://github.com/aimagelab/mammoth.
Abstract:With the emergence of Transformers and Vision-Language Models (VLMs) such as CLIP, large pre-trained models have become a common strategy to enhance performance in Continual Learning scenarios. This led to the development of numerous prompting strategies to effectively fine-tune transformer-based models without succumbing to catastrophic forgetting. However, these methods struggle to specialize the model on domains significantly deviating from the pre-training and preserving its zero-shot capabilities. In this work, we propose Continual Generative training for Incremental prompt-Learning, a novel approach to mitigate forgetting while adapting a VLM, which exploits generative replay to align prompts to tasks. We also introduce a new metric to evaluate zero-shot capabilities within CL benchmarks. Through extensive experiments on different domains, we demonstrate the effectiveness of our framework in adapting to new tasks while improving zero-shot capabilities. Further analysis reveals that our approach can bridge the gap with joint prompt tuning. The codebase is available at https://github.com/aimagelab/mammoth.
Abstract:The field of Continual Learning (CL) has inspired numerous researchers over the years, leading to increasingly advanced countermeasures to the issue of catastrophic forgetting. Most studies have focused on the single-class scenario, where each example comes with a single label. The recent literature has successfully tackled such a setting, with impressive results. Differently, we shift our attention to the multi-label scenario, as we feel it to be more representative of real-world open problems. In our work, we show that existing state-of-the-art CL methods fail to achieve satisfactory performance, thus questioning the real advance claimed in recent years. Therefore, we assess both old-style and novel strategies and propose, on top of them, an approach called Selective Class Attention Distillation (SCAD). It relies on a knowledge transfer technique that seeks to align the representations of the student network -- which trains continuously and is subject to forgetting -- with the teacher ones, which is pretrained and kept frozen. Importantly, our method is able to selectively transfer the relevant information from the teacher to the student, thereby preventing irrelevant information from harming the student's performance during online training. To demonstrate the merits of our approach, we conduct experiments on two different multi-label datasets, showing that our method outperforms the current state-of-the-art Continual Learning methods. Our findings highlight the importance of addressing the unique challenges posed by multi-label environments in the field of Continual Learning. The code of SCAD is available at https://github.com/aimagelab/SCAD-LOD-2024.
Abstract:The use of skeletal data allows deep learning models to perform action recognition efficiently and effectively. Herein, we believe that exploring this problem within the context of Continual Learning is crucial. While numerous studies focus on skeleton-based action recognition from a traditional offline perspective, only a handful venture into online approaches. In this respect, we introduce CHARON (Continual Human Action Recognition On skeletoNs), which maintains consistent performance while operating within an efficient framework. Through techniques like uniform sampling, interpolation, and a memory-efficient training stage based on masking, we achieve improved recognition accuracy while minimizing computational overhead. Our experiments on Split NTU-60 and the proposed Split NTU-120 datasets demonstrate that CHARON sets a new benchmark in this domain. The code is available at https://github.com/Sperimental3/CHARON.
Abstract:Federated Learning (FL) aims at unburdening the training of deep models by distributing computation across multiple devices (clients) while safeguarding data privacy. On top of that, Federated Continual Learning (FCL) also accounts for data distribution evolving over time, mirroring the dynamic nature of real-world environments. In this work, we shed light on the Incremental and Federated biases that naturally emerge in FCL. While the former is a known problem in Continual Learning, stemming from the prioritization of recently introduced classes, the latter (i.e., the bias towards local distributions) remains relatively unexplored. Our proposal constrains both biases in the last layer by efficiently fine-tuning a pre-trained backbone using learnable prompts, resulting in clients that produce less biased representations and more biased classifiers. Therefore, instead of solely relying on parameter aggregation, we also leverage generative prototypes to effectively balance the predictions of the global model. Our method improves on the current State Of The Art, providing an average increase of +7.9% in accuracy.
Abstract:Trajectory forecasting is crucial for video surveillance analytics, as it enables the anticipation of future movements for a set of agents, e.g. basketball players engaged in intricate interactions with long-term intentions. Deep generative models offer a natural learning approach for trajectory forecasting, yet they encounter difficulties in achieving an optimal balance between sampling fidelity and diversity. We address this challenge by leveraging Vector Quantized Variational Autoencoders (VQ-VAEs), which utilize a discrete latent space to tackle the issue of posterior collapse. Specifically, we introduce an instance-based codebook that allows tailored latent representations for each example. In a nutshell, the rows of the codebook are dynamically adjusted to reflect contextual information (i.e., past motion patterns extracted from the observed trajectories). In this way, the discretization process gains flexibility, leading to improved reconstructions. Notably, instance-level dynamics are injected into the codebook through low-rank updates, which restrict the customization of the codebook to a lower dimension space. The resulting discrete space serves as the basis of the subsequent step, which regards the training of a diffusion-based predictive model. We show that such a two-fold framework, augmented with instance-level discretization, leads to accurate and diverse forecasts, yielding state-of-the-art performance on three established benchmarks.
Abstract:The fine-tuning of deep pre-trained models has recently revealed compositional properties. This enables the arbitrary composition of multiple specialized modules into a single, multi-task model. However, identifying the conditions that promote compositionality remains an open issue, with recent efforts concentrating mainly on linearized networks. We conduct a theoretical study that attempts to demystify compositionality in standard non-linear networks through the second-order Taylor approximation of the loss function. The proposed formulation highlights the importance of staying within the pre-training basin for achieving composable modules. Moreover, it provides the basis for two dual incremental training algorithms: the one from the perspective of multiple models trained individually, while the other aims to optimize the composed model as a whole. We probe their application in incremental classification tasks and highlight some valuable skills. In fact, the pool of incrementally learned modules not only supports the creation of an effective multi-task model but also enables unlearning and specialization in specific tasks.
Abstract:We present SAM, a biologically-plausible selective attention-driven modulation approach to enhance classification models in a continual learning setting. Inspired by neurophysiological evidence that the primary visual cortex does not contribute to object manifold untangling for categorization and that primordial attention biases are still embedded in the modern brain, we propose to employ auxiliary saliency prediction features as a modulation signal to drive and stabilize the learning of a sequence of non-i.i.d. classification tasks. Experimental results confirm that SAM effectively enhances the performance (in some cases up to about twenty percent points) of state-of-the-art continual learning methods, both in class-incremental and task-incremental settings. Moreover, we show that attention-based modulation successfully encourages the learning of features that are more robust to the presence of spurious features and to adversarial attacks than baseline methods. Code is available at: https://github.com/perceivelab/SAM.
Abstract:Prompt-tuning methods for Continual Learning (CL) freeze a large pre-trained model and focus training on a few parameter vectors termed prompts. Most of these methods organize these vectors in a pool of key-value pairs, and use the input image as query to retrieve the prompts (values). However, as keys are learned while tasks progress, the prompting selection strategy is itself subject to catastrophic forgetting, an issue often overlooked by existing approaches. For instance, prompts introduced to accommodate new tasks might end up interfering with previously learned prompts. To make the selection strategy more stable, we ask a foundational model (CLIP) to select our prompt within a two-level adaptation mechanism. Specifically, the first level leverages standard textual prompts for the CLIP textual encoder, leading to stable class prototypes. The second level, instead, uses these prototypes along with the query image as keys to index a second pool. The retrieved prompts serve to adapt a pre-trained ViT, granting plasticity. In doing so, we also propose a novel residual mechanism to transfer CLIP semantics to the ViT layers. Through extensive analysis on established CL benchmarks, we show that our method significantly outperforms both state-of-the-art CL approaches and the zero-shot CLIP test. Notably, our findings hold true even for datasets with a substantial domain gap w.r.t. the pre-training knowledge of the backbone model, as showcased by experiments on satellite imagery and medical datasets.
Abstract:In this work, we propose a Self-Supervised training strategy specifically designed for combinatorial problems. One of the main obstacles in applying supervised paradigms to such problems is the requirement of expensive target solutions as ground-truth, often produced with costly exact solvers. Inspired by Semi- and Self-Supervised learning, we show that it is possible to easily train generative models by sampling multiple solutions and using the best one according to the problem objective as a pseudo-label. In this way, we iteratively improve the model generation capability by relying only on its self-supervision, completely removing the need for optimality information. We prove the effectiveness of this Self-Labeling strategy on the Job Shop Scheduling (JSP), a complex combinatorial problem that is receiving much attention from the Reinforcement Learning community. We propose a generative model based on the well-known Pointer Network and train it with our strategy. Experiments on two popular benchmarks demonstrate the potential of this approach as the resulting models outperform constructive heuristics and current state-of-the-art Reinforcement Learning proposals.