Abstract:Staining is essential in cell imaging and medical diagnostics but poses significant challenges, including high cost, time consumption, labor intensity, and irreversible tissue alterations. Recent advances in deep learning have enabled digital staining through supervised model training. However, collecting large-scale, perfectly aligned pairs of stained and unstained images remains difficult. In this work, we propose a novel unsupervised deep learning framework for digital cell staining that reduces the need for extensive paired data using knowledge distillation. We explore two training schemes: (1) unpaired and (2) paired-but-misaligned settings. For the unpaired case, we introduce a two-stage pipeline, comprising light enhancement followed by colorization, as a teacher model. Subsequently, we obtain a student staining generator through knowledge distillation with hybrid non-reference losses. To leverage the pixel-wise information between adjacent sections, we further extend to the paired-but-misaligned setting, adding the Learning to Align module to utilize pixel-level information. Experiment results on our dataset demonstrate that our proposed unsupervised deep staining method can generate stained images with more accurate positions and shapes of the cell targets in both settings. Compared with competing methods, our method achieves improved results both qualitatively and quantitatively (e.g., NIQE and PSNR).We applied our digital staining method to the White Blood Cell (WBC) dataset, investigating its potential for medical applications.
Abstract:Recent advancements in large language models (LLMs) have driven a revolutionary paradigm shift in process automation from Robotic Process Automation to Agentic Process Automation by automating the workflow orchestration procedure based on LLMs. However, existing LLMs (even the advanced OpenAI GPT-4o) are confined to achieving satisfactory capability in workflow orchestration. To address this limitation, we present WorkflowLLM, a data-centric framework elaborately designed to enhance the capability of LLMs in workflow orchestration. It first constructs a large-scale fine-tuning dataset WorkflowBench with 106,763 samples, covering 1,503 APIs from 83 applications across 28 categories. Specifically, the construction process can be divided into three phases: (1) Data Collection: we collect real-world workflow data from Apple Shortcuts and RoutineHub, transcribing them into Python-style code. We further equip them with generated hierarchical thought via ChatGPT. (2) Query Expansion: we prompt ChatGPT to generate more task queries to enrich the diversity and complexity of workflows. (3) Workflow Generation: we leverage an annotator model trained on collected data to generate workflows for synthesized queries. Finally, we merge the synthetic samples that pass quality confirmation with the collected samples to obtain the WorkflowBench. Based on WorkflowBench, we fine-tune Llama-3.1-8B to obtain WorkflowLlama. Our experiments show that WorkflowLlama demonstrates a strong capacity to orchestrate complex workflows, while also achieving notable generalization performance on previously unseen APIs. Additionally, WorkflowBench exhibits robust zero-shot generalization capabilities on an out-of-distribution task planning dataset, T-Eval. Our data and code are available at https://github.com/OpenBMB/WorkflowLLM.
Abstract:Staining is critical to cell imaging and medical diagnosis, which is expensive, time-consuming, labor-intensive, and causes irreversible changes to cell tissues. Recent advances in deep learning enabled digital staining via supervised model training. However, it is difficult to obtain large-scale stained/unstained cell image pairs in practice, which need to be perfectly aligned with the supervision. In this work, we propose a novel unsupervised deep learning framework for the digital staining of cell images using knowledge distillation and generative adversarial networks (GANs). A teacher model is first trained mainly for the colorization of bright-field images. After that,a student GAN for staining is obtained by knowledge distillation with hybrid non-reference losses. We show that the proposed unsupervised deep staining method can generate stained images with more accurate positions and shapes of the cell targets. Compared with other unsupervised deep generative models for staining, our method achieves much more promising results both qualitatively and quantitatively.