Abstract:Rapidly increasing context lengths have led to the assumption that large language models (LLMs) can directly reason over entire codebases. Concurrently, recent advances in LLMs have enabled strong performance on software engineering benchmarks, particularly when paired with agentic workflows. In this work, we systematically evaluate whether current LLMs can reliably perform long-context code debugging and patch generation. Using SWE-bench Verified as a controlled experimental setting, we first evaluate state-of-the-art models within an agentic harness (mini-SWE-agent), where performance improves substantially: GPT-5-nano achieves up to a 31\% resolve rate on 100 samples, and open-source models such as Deepseek-R1-0528 obtain competitive results. However, token-level analysis shows that successful agentic trajectories typically remain under 20k tokens, and that longer accumulated contexts correlate with lower success rates, indicating that agentic success primarily arises from task decomposition into short-context steps rather than effective long-context reasoning. To directly test long-context capability, we construct a data pipeline where we artificially inflate the context length of the input by placing the relevant files into the context (ensuring perfect retrieval recall); we then study single-shot patch generation under genuinely long contexts (64k-128k tokens). Despite this setup, performance degrades sharply: Qwen3-Coder-30B-A3B achieves only a 7\% resolve rate at 64k context, while GPT-5-nano solves none of the tasks. Qualitative analysis reveals systematic failure modes, including hallucinated diffs, incorrect file targets, and malformed patch headers. Overall, our findings highlight a significant gap between nominal context length and usable context capacity in current LLMs, and suggest that existing agentic coding benchmarks do not meaningfully evaluate long-context reasoning.




Abstract:Large language model (LLM) applications such as agents and domain-specific reasoning increasingly rely on context adaptation -- modifying inputs with instructions, strategies, or evidence, rather than weight updates. Prior approaches improve usability but often suffer from brevity bias, which drops domain insights for concise summaries, and from context collapse, where iterative rewriting erodes details over time. Building on the adaptive memory introduced by Dynamic Cheatsheet, we introduce ACE (Agentic Context Engineering), a framework that treats contexts as evolving playbooks that accumulate, refine, and organize strategies through a modular process of generation, reflection, and curation. ACE prevents collapse with structured, incremental updates that preserve detailed knowledge and scale with long-context models. Across agent and domain-specific benchmarks, ACE optimizes contexts both offline (e.g., system prompts) and online (e.g., agent memory), consistently outperforming strong baselines: +10.6% on agents and +8.6% on finance, while significantly reducing adaptation latency and rollout cost. Notably, ACE could adapt effectively without labeled supervision and instead by leveraging natural execution feedback. On the AppWorld leaderboard, ACE matches the top-ranked production-level agent on the overall average and surpasses it on the harder test-challenge split, despite using a smaller open-source model. These results show that comprehensive, evolving contexts enable scalable, efficient, and self-improving LLM systems with low overhead.




Abstract:Efficient long-context inference is critical as large language models (LLMs) adopt context windows of ranging from 128K to 1M tokens. However, the growing key-value (KV) cache and the high computational complexity of attention create significant bottlenecks in memory usage and latency. In this paper, we find that attention in diverse long-context tasks exhibits sparsity, and LLMs implicitly "know" which tokens can be dropped or evicted at the head level after the pre-filling stage. Based on this insight, we propose Self-Attention Guided Eviction~(SAGE-KV), a simple and effective KV eviction cache method for long-context inference. After prefilling, our method performs a one-time top-k selection at both the token and head levels to compress the KV cache, enabling efficient inference with the reduced cache. Evaluations on LongBench and three long-context LLMs (Llama3.1-8B-Instruct-128k, Llama3-8B-Prolong-512k-Instruct, and Qwen2.5-7B-Instruct-128k) show that SAGE-KV maintains accuracy comparable to full attention while significantly improving efficiency. Specifically, SAGE-KV achieves 4x higher memory efficiency with improved accuracy over the static KV cache selection method StreamLLM, and 2x higher memory efficiency with better accuracy than the dynamic KV cache selection method Quest.