Abstract:Speculative decoding improves LLM inference by generating and verifying multiple tokens in parallel, but existing systems suffer from suboptimal performance due to a mismatch between dynamic speculation and static runtime assumptions. We present Yggdrasil, a co-designed system that enables latency-optimal speculative decoding through context-aware tree drafting and compiler-friendly execution. Yggdrasil introduces an equal-growth tree structure for static graph compatibility, a latency-aware optimization objective for draft selection, and stage-based scheduling to reduce overhead. Yggdrasil supports unmodified LLMs and achieves up to $3.98\times$ speedup over state-of-the-art baselines across multiple hardware setups.




Abstract:Large language model (LLM) decoding suffers from high latency due to fragmented execution across operators and heavy reliance on off-chip memory for data exchange and reduction. This execution model limits opportunities for fusion and incurs significant memory traffic and kernel launch overhead. While modern architectures such as NVIDIA Hopper provide distributed shared memory and low-latency intra-cluster interconnects, they expose only low-level data movement instructions, lacking structured abstractions for collective on-chip communication. To bridge this software-hardware gap, we introduce two cluster-level communication primitives, ClusterReduce and ClusterGather, which abstract common communication patterns and enable structured, high-speed data exchange and reduction between thread blocks within a cluster, allowing intermediate results to be on-chip without involving off-chip memory. Building on these abstractions, we design ClusterFusion, an execution framework that schedules communication and computation jointly to expand operator fusion scope by composing decoding stages such as QKV Projection, Attention, and Output Projection into a single fused kernels. Evaluations on H100 GPUs show that ClusterFusion outperforms state-of-the-art inference frameworks by 1.61x on average in end-to-end latency across different models and configurations. The source code is available at https://github.com/xinhao-luo/ClusterFusion.