Abstract:Out-of-domain (OOD) robustness is challenging to achieve in real-world computer vision applications, where shifts in image background, style, and acquisition instruments always degrade model performance. Generic augmentations show inconsistent gains under such shifts, whereas dataset-specific augmentations require expert knowledge and prior analysis. Moreover, prior studies show that neural networks adapt poorly to domain shifts because they exhibit a learning bias to domain-specific frequency components. Perturbing frequency values can mitigate such bias but overlooks pixel-level details, leading to suboptimal performance. To address these problems, we propose D-GAP (Dataset-agnostic and Gradient-guided augmentation in Amplitude and Pixel spaces), improving OOD robustness by introducing targeted augmentation in both the amplitude space (frequency space) and pixel space. Unlike conventional handcrafted augmentations, D-GAP computes sensitivity maps in the frequency space from task gradients, which reflect how strongly the model responds to different frequency components, and uses the maps to adaptively interpolate amplitudes between source and target samples. This way, D-GAP reduces the learning bias in frequency space, while a complementary pixel-space blending procedure restores fine spatial details. Extensive experiments on four real-world datasets and three domain-adaptation benchmarks show that D-GAP consistently outperforms both generic and dataset-specific augmentations, improving average OOD performance by +5.3% on real-world datasets and +1.8% on benchmark datasets.




Abstract:Out-of-domain (OOD) robustness under domain adaptation settings, where labeled source data and unlabeled target data come from different distributions, is a key challenge in real-world applications. A common approach to improving OOD robustness is through data augmentations. However, in real-world scenarios, models trained with generic augmentations can only improve marginally when generalized under distribution shifts toward unlabeled target domains. While dataset-specific targeted augmentations can address this issue, they typically require expert knowledge and extensive prior data analysis to identify the nature of the datasets and domain shift. To address these challenges, we propose Frequency-Pixel Connect, a domain-adaptation framework that enhances OOD robustness by introducing a targeted augmentation in both the frequency space and pixel space. Specifically, we mix the amplitude spectrum and pixel content of a source image and a target image to generate augmented samples that introduce domain diversity while preserving the semantic structure of the source image. Unlike previous targeted augmentation methods that are both dataset-specific and limited to the pixel space, Frequency-Pixel Connect is dataset-agnostic, enabling broader and more flexible applicability beyond natural image datasets. We further analyze the effectiveness of Frequency-Pixel Connect by evaluating the performance of our method connecting same-class cross-domain samples while separating different-class examples. We demonstrate that Frequency-Pixel Connect significantly improves cross-domain connectivity and outperforms previous generic methods on four diverse real-world benchmarks across vision, medical, audio, and astronomical domains, and it also outperforms other dataset-specific targeted augmentation methods.




Abstract:Despite significant advancements in report generation methods, a critical limitation remains: the lack of interpretability in the generated text. This paper introduces an innovative approach to enhance the explainability of text generated by report generation models. Our method employs cyclic text manipulation and visual comparison to identify and elucidate the features in the original content that influence the generated text. By manipulating the generated reports and producing corresponding images, we create a comparative framework that highlights key attributes and their impact on the text generation process. This approach not only identifies the image features aligned to the generated text but also improves transparency but also provides deeper insights into the decision-making mechanisms of the report generation models. Our findings demonstrate the potential of this method to significantly enhance the interpretability and transparency of AI-generated reports.




Abstract:This paper focuses on the dataset-free Blind Image Super-Resolution (BISR). Unlike existing dataset-free BISR methods that focus on obtaining a degradation kernel for the entire image, we are the first to explicitly design a spatially-variant degradation model for each pixel. Our method also benefits from having a significantly smaller number of learnable parameters compared to data-driven spatially-variant BISR methods. Concretely, each pixel's degradation kernel is expressed as a linear combination of a learnable dictionary composed of a small number of spatially-variant atom kernels. The coefficient matrices of the atom degradation kernels are derived using membership functions of fuzzy set theory. We construct a novel Probabilistic BISR model with tailored likelihood function and prior terms. Subsequently, we employ the Monte Carlo EM algorithm to infer the degradation kernels for each pixel. Our method achieves a significant improvement over other state-of-the-art BISR methods, with an average improvement of 1 dB (2x).Code will be released at https://github.com/shaojieguoECNU/SVDSR.