Abstract:Small language models (SLMs) are widely used in tasks that require low latency and lightweight deployment, particularly classification. As interpretability and robustness gain increasing importance, explanation-guided learning has emerged as an effective framework by introducing attribution-based supervision during training; however, deriving general and reliable attribution priors remains a significant challenge. Through an analysis of representative attribution methods in classification settings, we find that although these methods can reliably highlight class-relevant tokens, they often focus on common keywords shared by semantically similar classes. Because such classes are already difficult to distinguish under standard training, these attributions provide insufficient discriminative cues, limiting their ability to improve model differentiation. To overcome this limitation, we propose Class-Aware Attribution Prior (CAP), a novel attribution prior extraction framework that guides language models toward capturing fine-grained class distinctions and producing more salient, discriminative attribution priors. Building on this idea, we further introduce CAP Hybrid, which combines priors from CAP with those from existing attribution techniques to form a more comprehensive and balanced supervisory signal. By aligning a model's self-attribution with these enriched priors, our approach encourages the learning of diverse, decision-relevant features. Extensive experiments in full-data, few-shot, and adversarial scenarios demonstrate that our method consistently enhances both interpretability and robustness.
Abstract:Few-shot Multi-label Intent Detection (MID) is crucial for dialogue systems, aiming to detect multiple intents of utterances in low-resource dialogue domains. Previous studies focus on a two-stage pipeline. They first learn representations of utterances with multiple labels and then use a threshold-based strategy to identify multi-label results. However, these methods rely on representation classification and ignore instance relations, leading to error propagation. To solve the above issues, we propose a multi-label joint learning method for few-shot MID in an end-to-end manner, which constructs an instance relation learning network with label knowledge propagation to eliminate error propagation. Concretely, we learn the interaction relations between instances with class information to propagate label knowledge between a few labeled (support set) and unlabeled (query set) instances. With label knowledge propagation, the relation strength between instances directly indicates whether two utterances belong to the same intent for multi-label prediction. Besides, a dual relation-enhanced loss is developed to optimize support- and query-level relation strength to improve performance. Experiments show that we outperform strong baselines by an average of 9.54% AUC and 11.19% Macro-F1 in 1-shot scenarios.