Alert button
Picture for Sanket Jantre

Sanket Jantre

Alert button

Learning Active Subspaces for Effective and Scalable Uncertainty Quantification in Deep Neural Networks

Sep 06, 2023
Sanket Jantre, Nathan M. Urban, Xiaoning Qian, Byung-Jun Yoon

Figure 1 for Learning Active Subspaces for Effective and Scalable Uncertainty Quantification in Deep Neural Networks
Figure 2 for Learning Active Subspaces for Effective and Scalable Uncertainty Quantification in Deep Neural Networks
Figure 3 for Learning Active Subspaces for Effective and Scalable Uncertainty Quantification in Deep Neural Networks
Figure 4 for Learning Active Subspaces for Effective and Scalable Uncertainty Quantification in Deep Neural Networks

Bayesian inference for neural networks, or Bayesian deep learning, has the potential to provide well-calibrated predictions with quantified uncertainty and robustness. However, the main hurdle for Bayesian deep learning is its computational complexity due to the high dimensionality of the parameter space. In this work, we propose a novel scheme that addresses this limitation by constructing a low-dimensional subspace of the neural network parameters-referred to as an active subspace-by identifying the parameter directions that have the most significant influence on the output of the neural network. We demonstrate that the significantly reduced active subspace enables effective and scalable Bayesian inference via either Monte Carlo (MC) sampling methods, otherwise computationally intractable, or variational inference. Empirically, our approach provides reliable predictions with robust uncertainty estimates for various regression tasks.

Viaarxiv icon

A comprehensive study of spike and slab shrinkage priors for structurally sparse Bayesian neural networks

Aug 17, 2023
Sanket Jantre, Shrijita Bhattacharya, Tapabrata Maiti

Figure 1 for A comprehensive study of spike and slab shrinkage priors for structurally sparse Bayesian neural networks
Figure 2 for A comprehensive study of spike and slab shrinkage priors for structurally sparse Bayesian neural networks
Figure 3 for A comprehensive study of spike and slab shrinkage priors for structurally sparse Bayesian neural networks
Figure 4 for A comprehensive study of spike and slab shrinkage priors for structurally sparse Bayesian neural networks

Network complexity and computational efficiency have become increasingly significant aspects of deep learning. Sparse deep learning addresses these challenges by recovering a sparse representation of the underlying target function by reducing heavily over-parameterized deep neural networks. Specifically, deep neural architectures compressed via structured sparsity (e.g. node sparsity) provide low latency inference, higher data throughput, and reduced energy consumption. In this paper, we explore two well-established shrinkage techniques, Lasso and Horseshoe, for model compression in Bayesian neural networks. To this end, we propose structurally sparse Bayesian neural networks which systematically prune excessive nodes with (i) Spike-and-Slab Group Lasso (SS-GL), and (ii) Spike-and-Slab Group Horseshoe (SS-GHS) priors, and develop computationally tractable variational inference including continuous relaxation of Bernoulli variables. We establish the contraction rates of the variational posterior of our proposed models as a function of the network topology, layer-wise node cardinalities, and bounds on the network weights. We empirically demonstrate the competitive performance of our models compared to the baseline models in prediction accuracy, model compression, and inference latency.

Viaarxiv icon

ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators

Jun 16, 2023
Sungduk Yu, Walter M. Hannah, Liran Peng, Mohamed Aziz Bhouri, Ritwik Gupta, Jerry Lin, Björn Lütjens, Justus C. Will, Tom Beucler, Bryce E. Harrop, Benjamin R. Hillman, Andrea M. Jenney, Savannah L. Ferretti, Nana Liu, Anima Anandkumar, Noah D. Brenowitz, Veronika Eyring, Pierre Gentine, Stephan Mandt, Jaideep Pathak, Carl Vondrick, Rose Yu, Laure Zanna, Ryan P. Abernathey, Fiaz Ahmed, David C. Bader, Pierre Baldi, Elizabeth A. Barnes, Gunnar Behrens, Christopher S. Bretherton, Julius J. M. Busecke, Peter M. Caldwell, Wayne Chuang, Yilun Han, Yu Huang, Fernando Iglesias-Suarez, Sanket Jantre, Karthik Kashinath, Marat Khairoutdinov, Thorsten Kurth, Nicholas J. Lutsko, Po-Lun Ma, Griffin Mooers, J. David Neelin, David A. Randall, Sara Shamekh, Akshay Subramaniam, Mark A. Taylor, Nathan M. Urban, Janni Yuval, Guang J. Zhang, Tian Zheng, Michael S. Pritchard

Figure 1 for ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators
Figure 2 for ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators
Figure 3 for ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators
Figure 4 for ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators

Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise prediction of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state. The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res) and code (https://leap-stc.github.io/ClimSim) are released openly to support the development of hybrid ML-physics and high-fidelity climate simulations for the benefit of science and society.

Viaarxiv icon

Unified Probabilistic Neural Architecture and Weight Ensembling Improves Model Robustness

Oct 08, 2022
Sumegha Premchandar, Sandeep Madireddy, Sanket Jantre, Prasanna Balaprakash

Figure 1 for Unified Probabilistic Neural Architecture and Weight Ensembling Improves Model Robustness
Figure 2 for Unified Probabilistic Neural Architecture and Weight Ensembling Improves Model Robustness
Figure 3 for Unified Probabilistic Neural Architecture and Weight Ensembling Improves Model Robustness

Robust machine learning models with accurately calibrated uncertainties are crucial for safety-critical applications. Probabilistic machine learning and especially the Bayesian formalism provide a systematic framework to incorporate robustness through the distributional estimates and reason about uncertainty. Recent works have shown that approximate inference approaches that take the weight space uncertainty of neural networks to generate ensemble prediction are the state-of-the-art. However, architecture choices have mostly been ad hoc, which essentially ignores the epistemic uncertainty from the architecture space. To this end, we propose a Unified probabilistic architecture and weight ensembling Neural Architecture Search (UraeNAS) that leverages advances in probabilistic neural architecture search and approximate Bayesian inference to generate ensembles form the joint distribution of neural network architectures and weights. The proposed approach showed a significant improvement both with in-distribution (0.86% in accuracy, 42% in ECE) CIFAR-10 and out-of-distribution (2.43% in accuracy, 30% in ECE) CIFAR-10-C compared to the baseline deterministic approach.

Viaarxiv icon

Sequential Bayesian Neural Subnetwork Ensembles

Jun 01, 2022
Sanket Jantre, Sandeep Madireddy, Shrijita Bhattacharya, Tapabrata Maiti, Prasanna Balaprakash

Figure 1 for Sequential Bayesian Neural Subnetwork Ensembles
Figure 2 for Sequential Bayesian Neural Subnetwork Ensembles
Figure 3 for Sequential Bayesian Neural Subnetwork Ensembles
Figure 4 for Sequential Bayesian Neural Subnetwork Ensembles

Deep neural network ensembles that appeal to model diversity have been used successfully to improve predictive performance and model robustness in several applications. Whereas, it has recently been shown that sparse subnetworks of dense models can match the performance of their dense counterparts and increase their robustness while effectively decreasing the model complexity. However, most ensembling techniques require multiple parallel and costly evaluations and have been proposed primarily with deterministic models, whereas sparsity induction has been mostly done through ad-hoc pruning. We propose sequential ensembling of dynamic Bayesian neural subnetworks that systematically reduce model complexity through sparsity-inducing priors and generate diverse ensembles in a single forward pass of the model. The ensembling strategy consists of an exploration phase that finds high-performing regions of the parameter space and multiple exploitation phases that effectively exploit the compactness of the sparse model to quickly converge to different minima in the energy landscape corresponding to high-performing subnetworks yielding diverse ensembles. We empirically demonstrate that our proposed approach surpasses the baselines of the dense frequentist and Bayesian ensemble models in prediction accuracy, uncertainty estimation, and out-of-distribution (OoD) robustness on CIFAR10, CIFAR100 datasets, and their out-of-distribution variants: CIFAR10-C, CIFAR100-C induced by corruptions. Furthermore, we found that our approach produced the most diverse ensembles compared to the approaches with a single forward pass and even compared to the approaches with multiple forward passes in some cases.

Viaarxiv icon

Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical Guarantees and Implementation Details

Aug 25, 2021
Sanket Jantre, Shrijita Bhattacharya, Tapabrata Maiti

Figure 1 for Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical Guarantees and Implementation Details
Figure 2 for Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical Guarantees and Implementation Details
Figure 3 for Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical Guarantees and Implementation Details
Figure 4 for Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical Guarantees and Implementation Details

Sparse deep neural networks have proven to be efficient for predictive model building in large-scale studies. Although several works have studied theoretical and numerical properties of sparse neural architectures, they have primarily focused on the edge selection. Sparsity through edge selection might be intuitively appealing; however, it does not necessarily reduce the structural complexity of a network. Instead pruning excessive nodes in each layer leads to a structurally sparse network which would have lower computational complexity and memory footprint. We propose a Bayesian sparse solution using spike-and-slab Gaussian priors to allow for node selection during training. The use of spike-and-slab prior alleviates the need of an ad-hoc thresholding rule for pruning redundant nodes from a network. In addition, we adopt a variational Bayes approach to circumvent the computational challenges of traditional Markov Chain Monte Carlo (MCMC) implementation. In the context of node selection, we establish the fundamental result of variational posterior consistency together with the characterization of prior parameters. In contrast to the previous works, our theoretical development relaxes the assumptions of the equal number of nodes and uniform bounds on all network weights, thereby accommodating sparse networks with layer-dependent node structures or coefficient bounds. With a layer-wise characterization of prior inclusion probabilities, we also discuss optimal contraction rates of the variational posterior. Finally, we provide empirical evidence to substantiate that our theoretical work facilitates layer-wise optimal node recovery together with competitive predictive performance.

Viaarxiv icon