Google Research
Abstract:Transformer networks use pairwise attention to compute contextual embeddings of inputs, and have redefined the state of the art in many NLP tasks. However, these models suffer from quadratic computational cost in the input sequence length $n$ to compute attention in each layer. This has prompted recent research into faster attention models, with a predominant approach involving sparsifying the connections in the attention layers. While empirically promising for long sequences, fundamental questions remain unanswered: Can sparse transformers approximate any arbitrary sequence-to-sequence function, similar to their dense counterparts? How does the sparsity pattern and the sparsity level affect their performance? In this paper, we address these questions and provide a unifying framework that captures existing sparse attention models. Our analysis proposes sufficient conditions under which we prove that a sparse attention model can universally approximate any sequence-to-sequence function. Surprisingly, our results show the existence of models with only $O(n)$ connections per attention layer that can approximate the same function class as the dense model with $n^2$ connections. Lastly, we present experiments comparing different patterns/levels of sparsity on standard NLP tasks.
Abstract:Among multiple ways of interpreting a machine learning model, measuring the importance of a set of features tied to a prediction is probably one of the most intuitive ways to explain a model. In this paper, we establish the link between a set of features to a prediction with a new evaluation criterion, robustness analysis, which measures the minimum distortion distance of adversarial perturbation. By measuring the tolerance level for an adversarial attack, we can extract a set of features that provides the most robust support for a prediction, and also can extract a set of features that contrasts the current prediction to a target class by setting a targeted adversarial attack. By applying this methodology to various prediction tasks across multiple domains, we observe the derived explanations are indeed capturing the significant feature set qualitatively and quantitatively.
Abstract:Knowledge distillation is a technique for improving the performance of a simple "student" model by replacing its one-hot training labels with a distribution over labels obtained from a complex "teacher" model. While this simple approach has proven widely effective, a basic question remains unresolved: why does distillation help? In this paper, we present a statistical perspective on distillation which addresses this question, and provides a novel connection to extreme multiclass retrieval techniques. Our core observation is that the teacher seeks to estimate the underlying (Bayes) class-probability function. Building on this, we establish a fundamental bias-variance tradeoff in the student's objective: this quantifies how approximate knowledge of these class-probabilities can significantly aid learning. Finally, we show how distillation complements existing negative mining techniques for extreme multiclass retrieval, and propose a unified objective which combines these ideas.
Abstract:Modern retrieval problems are characterised by training sets with potentially billions of labels, and heterogeneous data distributions across subpopulations (e.g., users of a retrieval system may be from different countries), each of which poses a challenge. The first challenge concerns scalability: with a large number of labels, standard losses are difficult to optimise even on a single example. The second challenge concerns uniformity: one ideally wants good performance on each subpopulation. While several solutions have been proposed to address the first challenge, the second challenge has received relatively less attention. In this paper, we propose doubly-stochastic mining (S2M ), a stochastic optimization technique that addresses both challenges. In each iteration of S2M, we compute a per-example loss based on a subset of hardest labels, and then compute the minibatch loss based on the hardest examples. We show theoretically and empirically that by focusing on the hardest examples, S2M ensures that all data subpopulations are modelled well.
Abstract:We consider learning a multi-class classification model in the federated setting, where each user has access to the positive data associated with only a single class. As a result, during each federated learning round, the users need to locally update the classifier without having access to the features and the model parameters for the negative classes. Thus, naively employing conventional decentralized learning such as the distributed SGD or Federated Averaging may lead to trivial or extremely poor classifiers. In particular, for the embedding based classifiers, all the class embeddings might collapse to a single point. To address this problem, we propose a generic framework for training with only positive labels, namely Federated Averaging with Spreadout (FedAwS), where the server imposes a geometric regularizer after each round to encourage classes to be spreadout in the embedding space. We show, both theoretically and empirically, that FedAwS can almost match the performance of conventional learning where users have access to negative labels. We further extend the proposed method to the settings with large output spaces.
Abstract:Recently, there has been a surge of interest in representation learning in hyperbolic spaces, driven by their ability to represent hierarchical data with significantly fewer dimensions than standard Euclidean spaces. However, the viability and benefits of hyperbolic spaces for downstream machine learning tasks have received less attention. In this paper, we present, to our knowledge, the first theoretical guarantees for learning a classifier in hyperbolic rather than Euclidean space. Specifically, we consider the problem of learning a large-margin classifier for data possessing a hierarchical structure. Our first contribution is a hyperbolic perceptron algorithm, which provably converges to a separating hyperplane. We then provide an algorithm to efficiently learn a large-margin hyperplane, relying on the careful injection of adversarial examples. Finally, we prove that for hierarchical data that embeds well into hyperbolic space, the low embedding dimension ensures superior guarantees when learning the classifier directly in hyperbolic space.
Abstract:Label smoothing is commonly used in training deep learning models, wherein one-hot training labels are mixed with uniform label vectors. Empirically, smoothing has been shown to improve both predictive performance and model calibration. In this paper, we study whether label smoothing is also effective as a means of coping with label noise. While label smoothing apparently amplifies this problem --- being equivalent to injecting symmetric noise to the labels --- we show how it relates to a general family of loss-correction techniques from the label noise literature. Building on this connection, we show that label smoothing is competitive with loss-correction under label noise. Further, we show that when distilling models from noisy data, label smoothing of the teacher is beneficial; this is in contrast to recent findings for noise-free problems, and sheds further light on settings where label smoothing is beneficial.
Abstract:Federated learning is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. Due to the heterogeneity of the client datasets, standard federated optimization methods such as Federated Averaging (FedAvg) are often difficult to tune and exhibit unfavorable convergence behavior. In non-federated settings, adaptive optimization methods have had notable success in combating such issues. In this work, we propose federated versions of adaptive optimizers, including Adagrad, Adam, and Yogi, and analyze their convergence in the presence of heterogeneous data for general nonconvex settings. Our results highlight the interplay between client heterogeneity and communication efficiency. We also perform extensive experiments on these methods and show that the use of adaptive optimizers can significantly improve the performance of federated learning.
Abstract:Attention based Transformer architecture has enabled significant advances in the field of natural language processing. In addition to new pre-training techniques, recent improvements crucially rely on working with a relatively larger embedding dimension for tokens. Unfortunately, this leads to models that are prohibitively large to be employed in the downstream tasks. In this paper we identify one of the important factors contributing to the large embedding size requirement. In particular, our analysis highlights that the scaling between the number of heads and the size of each head in the current architecture gives rise to a low-rank bottleneck in attention heads, causing this limitation. We further validate this in our experiments. As a solution we propose to set the head size of an attention unit to input sequence length, and independent of the number of heads, resulting in multi-head attention layers with provably more expressive power. We empirically show that this allows us to train models with a relatively smaller embedding dimension and with better performance scaling.
Abstract:We consider the large-scale query-document retrieval problem: given a query (e.g., a question), return the set of relevant documents (e.g., paragraphs containing the answer) from a large document corpus. This problem is often solved in two steps. The retrieval phase first reduces the solution space, returning a subset of candidate documents. The scoring phase then re-ranks the documents. Critically, the retrieval algorithm not only desires high recall but also requires to be highly efficient, returning candidates in time sublinear to the number of documents. Unlike the scoring phase witnessing significant advances recently due to the BERT-style pre-training tasks on cross-attention models, the retrieval phase remains less well studied. Most previous works rely on classic Information Retrieval (IR) methods such as BM-25 (token matching + TF-IDF weights). These models only accept sparse handcrafted features and can not be optimized for different downstream tasks of interest. In this paper, we conduct a comprehensive study on the embedding-based retrieval models. We show that the key ingredient of learning a strong embedding-based Transformer model is the set of pre-training tasks. With adequately designed paragraph-level pre-training tasks, the Transformer models can remarkably improve over the widely-used BM-25 as well as embedding models without Transformers. The paragraph-level pre-training tasks we studied are Inverse Cloze Task (ICT), Body First Selection (BFS), Wiki Link Prediction (WLP), and the combination of all three.