Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Ainesh Bakshi, Vincent Cohen-Addad, Samuel B. Hopkins, Rajesh Jayaram, Silvio Lattanzi

Multi-dimensional Scaling (MDS) is a family of methods for embedding pair-wise dissimilarities between $n$ objects into low-dimensional space. MDS is widely used as a data visualization tool in the social and biological sciences, statistics, and machine learning. We study the Kamada-Kawai formulation of MDS: given a set of non-negative dissimilarities $\{d_{i,j}\}_{i , j \in [n]}$ over $n$ points, the goal is to find an embedding $\{x_1,\dots,x_n\} \subset \mathbb{R}^k$ that minimizes \[ \text{OPT} = \min_{x} \mathbb{E}_{i,j \in [n]} \left[ \left(1-\frac{\|x_i - x_j\|}{d_{i,j}}\right)^2 \right] \] Despite its popularity, our theoretical understanding of MDS is extremely limited. Recently, Demaine, Hesterberg, Koehler, Lynch, and Urschel (arXiv:2109.11505) gave the first approximation algorithm with provable guarantees for Kamada-Kawai, which achieves an embedding with cost $\text{OPT} +\epsilon$ in $n^2 \cdot 2^{\tilde{\mathcal{O}}(k \Delta^4 / \epsilon^2)}$ time, where $\Delta$ is the aspect ratio of the input dissimilarities. In this work, we give the first approximation algorithm for MDS with quasi-polynomial dependency on $\Delta$: for target dimension $k$, we achieve a solution with cost $\mathcal{O}(\text{OPT}^{ \hspace{0.04in}1/k } \cdot \log(\Delta/\epsilon) )+ \epsilon$ in time $n^{ \mathcal{O}(1)} \cdot 2^{\tilde{\mathcal{O}}( k^2 (\log(\Delta)/\epsilon)^{k/2 + 1} ) }$. Our approach is based on a novel analysis of a conditioning-based rounding scheme for the Sherali-Adams LP Hierarchy. Crucially, our analysis exploits the geometry of low-dimensional Euclidean space, allowing us to avoid an exponential dependence on the aspect ratio $\Delta$. We believe our geometry-aware treatment of the Sherali-Adams Hierarchy is an important step towards developing general-purpose techniques for efficient metric optimization algorithms.

Via

Daniel Freund, Samuel B. Hopkins

We investigate practical algorithms to find or disprove the existence of small subsets of a dataset which, when removed, reverse the sign of a coefficient in an ordinary least squares regression involving that dataset. We empirically study the performance of well-established algorithmic techniques for this task -- mixed integer quadratically constrained optimization for general linear regression problems and exact greedy methods for special cases. We show that these methods largely outperform the state of the art and provide a useful robustness check for regression problems in a few dimensions. However, significant computational bottlenecks remain, especially for the important task of disproving the existence of such small sets of influential samples for regression problems of dimension $3$ or greater. We make some headway on this challenge via a spectral algorithm using ideas drawn from recent innovations in algorithmic robust statistics. We summarize the limitations of known techniques in several challenge datasets to encourage further algorithmic innovation.

Via

Gavin Brown, Samuel B. Hopkins, Adam Smith

We present a fast, differentially private algorithm for high-dimensional covariance-aware mean estimation with nearly optimal sample complexity. Only exponential-time estimators were previously known to achieve this guarantee. Given $n$ samples from a (sub-)Gaussian distribution with unknown mean $\mu$ and covariance $\Sigma$, our $(\varepsilon,\delta)$-differentially private estimator produces $\tilde{\mu}$ such that $\|\mu - \tilde{\mu}\|_{\Sigma} \leq \alpha$ as long as $n \gtrsim \tfrac d {\alpha^2} + \tfrac{d \sqrt{\log 1/\delta}}{\alpha \varepsilon}+\frac{d\log 1/\delta}{\varepsilon}$. The Mahalanobis error metric $\|\mu - \hat{\mu}\|_{\Sigma}$ measures the distance between $\hat \mu$ and $\mu$ relative to $\Sigma$; it characterizes the error of the sample mean. Our algorithm runs in time $\tilde{O}(nd^{\omega - 1} + nd/\varepsilon)$, where $\omega < 2.38$ is the matrix multiplication exponent. We adapt an exponential-time approach of Brown, Gaboardi, Smith, Ullman, and Zakynthinou (2021), giving efficient variants of stable mean and covariance estimation subroutines that also improve the sample complexity to the nearly optimal bound above. Our stable covariance estimator can be turned to private covariance estimation for unrestricted subgaussian distributions. With $n\gtrsim d^{3/2}$ samples, our estimate is accurate in spectral norm. This is the first such algorithm using $n= o(d^2)$ samples, answering an open question posed by Alabi et al. (2022). With $n\gtrsim d^2$ samples, our estimate is accurate in Frobenius norm. This leads to a fast, nearly optimal algorithm for private learning of unrestricted Gaussian distributions in TV distance. Duchi, Haque, and Kuditipudi (2023) obtained similar results independently and concurrently.

Via

Samuel B. Hopkins, Gautam Kamath, Mahbod Majid, Shyam Narayanan

We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.

Via

Kristian Georgiev, Samuel B. Hopkins

We establish a simple connection between robust and differentially-private algorithms: private mechanisms which perform well with very high probability are automatically robust in the sense that they retain accuracy even if a constant fraction of the samples they receive are adversarially corrupted. Since optimal mechanisms typically achieve these high success probabilities, our results imply that optimal private mechanisms for many basic statistics problems are robust. We investigate the consequences of this observation for both algorithms and computational complexity across different statistical problems. Assuming the Brennan-Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental tradeoff between computational efficiency, privacy leakage, and success probability for sparse mean estimation. Private algorithms which match this tradeoff are not yet known -- we achieve that (up to polylogarithmic factors) in a polynomially-large range of parameters via the Sum-of-Squares method. To establish an information-computation gap for private sparse mean estimation, we also design new (exponential-time) mechanisms using fewer samples than efficient algorithms must use. Finally, we give evidence for privacy-induced information-computation gaps for several other statistics and learning problems, including PAC learning parity functions and estimation of the mean of a multivariate Gaussian.

Via

Afonso S. Bandeira, Ahmed El Alaoui, Samuel B. Hopkins, Tselil Schramm, Alexander S. Wein, Ilias Zadik

Many high-dimensional statistical inference problems are believed to possess inherent computational hardness. Various frameworks have been proposed to give rigorous evidence for such hardness, including lower bounds against restricted models of computation (such as low-degree functions), as well as methods rooted in statistical physics that are based on free energy landscapes. This paper aims to make a rigorous connection between the seemingly different low-degree and free-energy based approaches. We define a free-energy based criterion for hardness and formally connect it to the well-established notion of low-degree hardness for a broad class of statistical problems, namely all Gaussian additive models and certain models with a sparse planted signal. By leveraging these rigorous connections we are able to: establish that for Gaussian additive models the "algebraic" notion of low-degree hardness implies failure of "geometric" local MCMC algorithms, and provide new low-degree lower bounds for sparse linear regression which seem difficult to prove directly. These results provide both conceptual insights into the connections between different notions of hardness, as well as concrete technical tools such as new methods for proving low-degree lower bounds.

Via

Samuel B. Hopkins, Tselil Schramm, Jonathan Shi

We give a spectral algorithm for decomposing overcomplete order-4 tensors, so long as their components satisfy an algebraic non-degeneracy condition that holds for nearly all (all but an algebraic set of measure $0$) tensors over $(\mathbb{R}^d)^{\otimes 4}$ with rank $n \le d^2$. Our algorithm is robust to adversarial perturbations of bounded spectral norm. Our algorithm is inspired by one which uses the sum-of-squares semidefinite programming hierarchy (Ma, Shi, and Steurer STOC'16, arXiv:1610.01980), and we achieve comparable robustness and overcompleteness guarantees under similar algebraic assumptions. However, our algorithm avoids semidefinite programming and may be implemented as a series of basic linear-algebraic operations. We consequently obtain a much faster running time than semidefinite programming methods: our algorithm runs in time $\tilde O(n^2d^3) \le \tilde O(d^7)$, which is subquadratic in the input size $d^4$ (where we have suppressed factors related to the condition number of the input tensor).

Via

Samuel B. Hopkins, Gautam Kamath, Mahbod Majid

We give the first polynomial-time algorithm to estimate the mean of a $d$-variate probability distribution with bounded covariance from $\tilde{O}(d)$ independent samples subject to pure differential privacy. Prior algorithms for this problem either incur exponential running time, require $\Omega(d^{1.5})$ samples, or satisfy only the weaker concentrated or approximate differential privacy conditions. In particular, all prior polynomial-time algorithms require $d^{1+\Omega(1)}$ samples to guarantee small privacy loss with "cryptographically" high probability, $1-2^{-d^{\Omega(1)}}$, while our algorithm retains $\tilde{O}(d)$ sample complexity even in this stringent setting. Our main technique is a new approach to use the powerful Sum of Squares method (SoS) to design differentially private algorithms. SoS proofs to algorithms is a key theme in numerous recent works in high-dimensional algorithmic statistics -- estimators which apparently require exponential running time but whose analysis can be captured by low-degree Sum of Squares proofs can be automatically turned into polynomial-time algorithms with the same provable guarantees. We demonstrate a similar proofs to private algorithms phenomenon: instances of the workhorse exponential mechanism which apparently require exponential time but which can be analyzed with low-degree SoS proofs can be automatically turned into polynomial-time differentially private algorithms. We prove a meta-theorem capturing this phenomenon, which we expect to be of broad use in private algorithm design. Our techniques also draw new connections between differentially private and robust statistics in high dimensions. In particular, viewed through our proofs-to-private-algorithms lens, several well-studied SoS proofs from recent works in algorithmic robust statistics directly yield key components of our differentially private mean estimation algorithm.

Via

Matthew Brennan, Guy Bresler, Samuel B. Hopkins, Jerry Li, Tselil Schramm

Researchers currently use a number of approaches to predict and substantiate information-computation gaps in high-dimensional statistical estimation problems. A prominent approach is to characterize the limits of restricted models of computation, which on the one hand yields strong computational lower bounds for powerful classes of algorithms and on the other hand helps guide the development of efficient algorithms. In this paper, we study two of the most popular restricted computational models, the statistical query framework and low-degree polynomials, in the context of high-dimensional hypothesis testing. Our main result is that under mild conditions on the testing problem, the two classes of algorithms are essentially equivalent in power. As corollaries, we obtain new statistical query lower bounds for sparse PCA, tensor PCA and several variants of the planted clique problem.

Via

Jingqiu Ding, Samuel B. Hopkins, David Steurer

We study symmetric spiked matrix models with respect to a general class of noise distributions. Given a rank-1 deformation of a random noise matrix, whose entries are independently distributed with zero mean and unit variance, the goal is to estimate the rank-1 part. For the case of Gaussian noise, the top eigenvector of the given matrix is a widely-studied estimator known to achieve optimal statistical guarantees, e.g., in the sense of the celebrated BBP phase transition. However, this estimator can fail completely for heavy-tailed noise. In this work, we exhibit an estimator that works for heavy-tailed noise up to the BBP threshold that is optimal even for Gaussian noise. We give a non-asymptotic analysis of our estimator which relies only on the variance of each entry remaining constant as the size of the matrix grows: higher moments may grow arbitrarily fast or even fail to exist. Previously, it was only known how to achieve these guarantees if higher-order moments of the noises are bounded by a constant independent of the size of the matrix. Our estimator can be evaluated in polynomial time by counting self-avoiding walks via a color -coding technique. Moreover, we extend our estimator to spiked tensor models and establish analogous results.

Via