Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians

Oct 19, 2020
Ishaq Aden-Ali, Hassan Ashtiani, Gautam Kamath


  Access Paper or Ask Questions

Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization

Oct 18, 2020
Pranav Subramani, Nicholas Vadivelu, Gautam Kamath


  Access Paper or Ask Questions

CoinPress: Practical Private Mean and Covariance Estimation

Jun 11, 2020
Sourav Biswas, Yihe Dong, Gautam Kamath, Jonathan Ullman

* Code is available at https://github.com/twistedcubic/coin-press 

  Access Paper or Ask Questions

A Primer on Private Statistics

Apr 30, 2020
Gautam Kamath, Jonathan Ullman

* 20 pages. Comments welcome 

  Access Paper or Ask Questions

The Discrete Gaussian for Differential Privacy

Apr 07, 2020
Clément Canonne, Gautam Kamath, Thomas Steinke

* Working paper, comments welcome 

  Access Paper or Ask Questions

PAPRIKA: Private Online False Discovery Rate Control

Feb 27, 2020
Wanrong Zhang, Gautam Kamath, Rachel Cummings


  Access Paper or Ask Questions

Privately Learning Markov Random Fields

Feb 21, 2020
Huanyu Zhang, Gautam Kamath, Janardhan Kulkarni, Zhiwei Steven Wu


  Access Paper or Ask Questions

Private Mean Estimation of Heavy-Tailed Distributions

Feb 21, 2020
Gautam Kamath, Vikrant Singhal, Jonathan Ullman


  Access Paper or Ask Questions

Locally Private Hypothesis Selection

Feb 21, 2020
Sivakanth Gopi, Gautam Kamath, Janardhan Kulkarni, Aleksandar Nikolov, Zhiwei Steven Wu, Huanyu Zhang


  Access Paper or Ask Questions

Random Restrictions of High-Dimensional Distributions and Uniformity Testing with Subcube Conditioning

Nov 17, 2019
Clément L. Canonne, Xi Chen, Gautam Kamath, Amit Levi, Erik Waingarten

* 40 pages 

  Access Paper or Ask Questions

Differentially Private Algorithms for Learning Mixtures of Separated Gaussians

Oct 15, 2019
Gautam Kamath, Or Sheffet, Vikrant Singhal, Jonathan Ullman

* To appear in NeurIPS 2019 

  Access Paper or Ask Questions

Private Hypothesis Selection

May 30, 2019
Mark Bun, Gautam Kamath, Thomas Steinke, Zhiwei Steven Wu


  Access Paper or Ask Questions

Private Identity Testing for High-Dimensional Distributions

May 28, 2019
Clément L. Canonne, Gautam Kamath, Audra McMillan, Jonathan Ullman, Lydia Zakynthinou


  Access Paper or Ask Questions

The Structure of Optimal Private Tests for Simple Hypotheses

Nov 27, 2018
Clément L. Canonne, Gautam Kamath, Audra McMillan, Adam Smith, Jonathan Ullman


  Access Paper or Ask Questions

Anaconda: A Non-Adaptive Conditional Sampling Algorithm for Distribution Testing

Nov 05, 2018
Gautam Kamath, Christos Tzamos

* SODA 2019 

  Access Paper or Ask Questions

Privately Learning High-Dimensional Distributions

Sep 18, 2018
Gautam Kamath, Jerry Li, Vikrant Singhal, Jonathan Ullman


  Access Paper or Ask Questions

Being Robust (in High Dimensions) Can Be Practical

Mar 13, 2018
Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart

* Appeared in ICML 2017 

  Access Paper or Ask Questions

Sever: A Robust Meta-Algorithm for Stochastic Optimization

Mar 07, 2018
Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob Steinhardt, Alistair Stewart


  Access Paper or Ask Questions

INSPECTRE: Privately Estimating the Unseen

Feb 28, 2018
Jayadev Acharya, Gautam Kamath, Ziteng Sun, Huanyu Zhang


  Access Paper or Ask Questions

Actively Avoiding Nonsense in Generative Models

Feb 20, 2018
Steve Hanneke, Adam Kalai, Gautam Kamath, Christos Tzamos


  Access Paper or Ask Questions

Robustly Learning a Gaussian: Getting Optimal Error, Efficiently

Nov 05, 2017
Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart

* To appear in SODA 2018 

  Access Paper or Ask Questions

Which Distribution Distances are Sublinearly Testable?

Oct 31, 2017
Constantinos Daskalakis, Gautam Kamath, John Wright

* To appear in SODA 2018 

  Access Paper or Ask Questions

Testing Ising Models

Oct 30, 2017
Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath

* To appear in SODA 2018 

  Access Paper or Ask Questions

Concentration of Multilinear Functions of the Ising Model with Applications to Network Data

Oct 11, 2017
Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath

* To appear in NIPS 2017 

  Access Paper or Ask Questions

Priv'IT: Private and Sample Efficient Identity Testing

Jun 07, 2017
Bryan Cai, Constantinos Daskalakis, Gautam Kamath

* To appear in ICML 2017 

  Access Paper or Ask Questions

A Size-Free CLT for Poisson Multinomials and its Applications

Jun 16, 2016
Constantinos Daskalakis, Anindya De, Gautam Kamath, Christos Tzamos

* To appear in STOC 2016 

  Access Paper or Ask Questions

Robust Estimators in High Dimensions without the Computational Intractability

Apr 21, 2016
Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, Alistair Stewart


  Access Paper or Ask Questions

Optimal Testing for Properties of Distributions

Dec 08, 2015
Jayadev Acharya, Constantinos Daskalakis, Gautam Kamath

* 31 pages, extended abstract appeared as a spotlight in NIPS 2015 

  Access Paper or Ask Questions