Abstract:Large language model (LLM) benchmarks inform LLM use decisions (e.g., "is this LLM safe to deploy for my use case and context?"). However, benchmarks may be rendered unreliable by various failure modes that impact benchmark bias, variance, coverage, or people's capacity to understand benchmark evidence. Using the National Institute of Standards and Technology's risk management process as a foundation, this research iteratively analyzed 26 popular benchmarks, identifying 57 potential failure modes and 196 corresponding mitigation strategies. The mitigations reduce failure likelihood and/or severity, providing a frame for evaluating "benchmark risk," which is scored to provide a metaevaluation benchmark: BenchRisk. Higher scores indicate that benchmark users are less likely to reach an incorrect or unsupported conclusion about an LLM. All 26 scored benchmarks present significant risk within one or more of the five scored dimensions (comprehensiveness, intelligibility, consistency, correctness, and longevity), which points to important open research directions for the field of LLM benchmarking. The BenchRisk workflow allows for comparison between benchmarks; as an open-source tool, it also facilitates the identification and sharing of risks and their mitigations.

Abstract:Background and Context. The increasing integration of large language models (LLMs) in computing education presents an emerging challenge in understanding how students use LLMs and craft prompts to solve computational tasks. Prior research has used both qualitative and quantitative methods to analyze prompting behavior, but these approaches lack scalability or fail to effectively capture the semantic evolution of prompts. Objective. In this paper, we investigate whether students prompts can be systematically analyzed using propositional logic constraints. We examine whether this approach can identify patterns in prompt evolution, detect struggling students, and provide insights into effective and ineffective strategies. Method. We introduce Prompt2Constraints, a novel method that translates students prompts into logical constraints. The constraints are able to represent the intent of the prompts in succinct and quantifiable ways. We used this approach to analyze a dataset of 1,872 prompts from 203 students solving introductory programming tasks. Findings. We find that while successful and unsuccessful attempts tend to use a similar number of constraints overall, when students fail, they often modify their prompts more significantly, shifting problem-solving strategies midway. We also identify points where specific interventions could be most helpful to students for refining their prompts. Implications. This work offers a new and scalable way to detect students who struggle in solving natural language programming tasks. This work could be extended to investigate more complex tasks and integrated into programming tools to provide real-time support.
