Abstract:Large language model (LLM) benchmarks inform LLM use decisions (e.g., "is this LLM safe to deploy for my use case and context?"). However, benchmarks may be rendered unreliable by various failure modes that impact benchmark bias, variance, coverage, or people's capacity to understand benchmark evidence. Using the National Institute of Standards and Technology's risk management process as a foundation, this research iteratively analyzed 26 popular benchmarks, identifying 57 potential failure modes and 196 corresponding mitigation strategies. The mitigations reduce failure likelihood and/or severity, providing a frame for evaluating "benchmark risk," which is scored to provide a metaevaluation benchmark: BenchRisk. Higher scores indicate that benchmark users are less likely to reach an incorrect or unsupported conclusion about an LLM. All 26 scored benchmarks present significant risk within one or more of the five scored dimensions (comprehensiveness, intelligibility, consistency, correctness, and longevity), which points to important open research directions for the field of LLM benchmarking. The BenchRisk workflow allows for comparison between benchmarks; as an open-source tool, it also facilitates the identification and sharing of risks and their mitigations.
Abstract:The training data for many Large Language Models (LLMs) is contaminated with test data. This means that public benchmarks used to assess LLMs are compromised, suggesting a performance gap between benchmark scores and actual capabilities. Ideally, a private holdout set could be used to accurately verify scores. Unfortunately, such datasets do not exist for most benchmarks, and post-hoc construction of sufficiently similar datasets is non-trivial. To address these issues, we introduce a systematic methodology for (i) retrospectively constructing a holdout dataset for a target dataset, (ii) demonstrating the statistical indistinguishability of this retro-holdout dataset, and (iii) comparing LLMs on the two datasets to quantify the performance gap due to the dataset's public availability. Applying these methods to TruthfulQA, we construct and release Retro-Misconceptions, on which we evaluate twenty LLMs and find that some have inflated scores by as much as 16 percentage points. Our results demonstrate that public benchmark scores do not always accurately assess model properties, and underscore the importance of improved data practices in the field.