Abstract:Background and Context. The increasing integration of large language models (LLMs) in computing education presents an emerging challenge in understanding how students use LLMs and craft prompts to solve computational tasks. Prior research has used both qualitative and quantitative methods to analyze prompting behavior, but these approaches lack scalability or fail to effectively capture the semantic evolution of prompts. Objective. In this paper, we investigate whether students prompts can be systematically analyzed using propositional logic constraints. We examine whether this approach can identify patterns in prompt evolution, detect struggling students, and provide insights into effective and ineffective strategies. Method. We introduce Prompt2Constraints, a novel method that translates students prompts into logical constraints. The constraints are able to represent the intent of the prompts in succinct and quantifiable ways. We used this approach to analyze a dataset of 1,872 prompts from 203 students solving introductory programming tasks. Findings. We find that while successful and unsuccessful attempts tend to use a similar number of constraints overall, when students fail, they often modify their prompts more significantly, shifting problem-solving strategies midway. We also identify points where specific interventions could be most helpful to students for refining their prompts. Implications. This work offers a new and scalable way to detect students who struggle in solving natural language programming tasks. This work could be extended to investigate more complex tasks and integrated into programming tools to provide real-time support.
Abstract:LLMs such as ChatGPT have been widely adopted by students in higher education as tools for learning programming and related concepts. However, it remains unclear how effective students are and what strategies students use while learning with LLMs. Since the majority of students' experiences in online self-learning have come through using search engines such as Google, evaluating AI tools in this context can help us address these gaps. In this mixed methods research, we conducted an exploratory within-subjects study to understand how CS2 students learn programming concepts using both LLMs as well as traditional online methods such as educational websites and videos to examine how students approach learning within and across both scenarios. We discovered that students found it easier to learn a more difficult concept using traditional methods than using ChatGPT. We also found that students ask fewer follow-ups and use more keyword-based queries for search engines while their prompts to LLMs tend to explicitly ask for information.