Abstract:Background and Context. The increasing integration of large language models (LLMs) in computing education presents an emerging challenge in understanding how students use LLMs and craft prompts to solve computational tasks. Prior research has used both qualitative and quantitative methods to analyze prompting behavior, but these approaches lack scalability or fail to effectively capture the semantic evolution of prompts. Objective. In this paper, we investigate whether students prompts can be systematically analyzed using propositional logic constraints. We examine whether this approach can identify patterns in prompt evolution, detect struggling students, and provide insights into effective and ineffective strategies. Method. We introduce Prompt2Constraints, a novel method that translates students prompts into logical constraints. The constraints are able to represent the intent of the prompts in succinct and quantifiable ways. We used this approach to analyze a dataset of 1,872 prompts from 203 students solving introductory programming tasks. Findings. We find that while successful and unsuccessful attempts tend to use a similar number of constraints overall, when students fail, they often modify their prompts more significantly, shifting problem-solving strategies midway. We also identify points where specific interventions could be most helpful to students for refining their prompts. Implications. This work offers a new and scalable way to detect students who struggle in solving natural language programming tasks. This work could be extended to investigate more complex tasks and integrated into programming tools to provide real-time support.
Abstract:Non-native English speakers (NNES) face multiple barriers to learning programming. These barriers can be obvious, such as the fact that programming language syntax and instruction are often in English, or more subtle, such as being afraid to ask for help in a classroom full of native English speakers. However, these barriers are frustrating because many NNES students know more about programming than they can articulate in English. Advances in generative AI (GenAI) have the potential to break down these barriers because state of the art models can support interactions in multiple languages. Moreover, recent work has shown that GenAI can be highly accurate at code generation and explanation. In this paper, we provide the first exploration of NNES students prompting in their native languages (Arabic, Chinese, and Portuguese) to generate code to solve programming problems. Our results show that students are able to successfully use their native language to solve programming problems, but not without some difficulty specifying programming terminology and concepts. We discuss the challenges they faced, the implications for practice in the short term, and how this might transform computing education globally in the long term.