Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Quantifying uncertainty for deep learning based forecasting and flow-reconstruction using neural architecture search ensembles


Feb 20, 2023
Romit Maulik, Romain Egele, Krishnan Raghavan, Prasanna Balaprakash

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

HPC Storage Service Autotuning Using Variational-Autoencoder-Guided Asynchronous Bayesian Optimization


Oct 03, 2022
Matthieu Dorier, Romain Egele, Prasanna Balaprakash, Jaehoon Koo, Sandeep Madireddy, Srinivasan Ramesh, Allen D. Malony, Rob Ross

Add code

* Accepted at IEEE Cluster 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Asynchronous Distributed Bayesian Optimization at HPC Scale


Jul 04, 2022
Romain Egele, Joceran Gouneau, Venkatram Vishwanath, Isabelle Guyon, Prasanna Balaprakash

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification


Oct 26, 2021
Romain Egele, Romit Maulik, Krishnan Raghavan, Prasanna Balaprakash, Bethany Lusch

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with Autotuned Data-Parallel Training for Tabular Data


Oct 30, 2020
Romain Egele, Prasanna Balaprakash, Venkatram Vishwanath, Isabelle Guyon, Zhengying Liu

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Scalable Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep Learning Research


Sep 01, 2019
Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan Wild, Venkatram Vishwanath, Fangfang Xia, Tom Brettin, Rick Stevens

Add code

* SC '19: IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis, November 17--22, 2019, Denver, CO 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email