Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Last-layer retraining methods have emerged as an efficient framework for correcting existing base models. Within this framework, several methods have been proposed to deal with correcting models for subgroup fairness with and without group membership information. Importantly, prior work has demonstrated that many methods are susceptible to noisy labels. To this end, we propose a drop-in correction for label noise in last-layer retraining, and demonstrate that it achieves state-of-the-art worst-group accuracy for a broad range of symmetric label noise and across a wide variety of datasets exhibiting spurious correlations. Our proposed approach uses label spreading on a latent nearest neighbors graph and has minimal computational overhead compared to existing methods.

Via

More often than not in benchmark supervised ML, tabular data is flat, i.e. consists of a single $m \times d$ (rows, columns) file, but cases abound in the real world where observations are described by a set of tables with structural relationships. Neural nets-based deep models are a classical fit to incorporate general topological dependence among description features (pixels, words, etc.), but their suboptimality to tree-based models on tabular data is still well documented. In this paper, we introduce an attention mechanism for structured data that blends well with tree-based models in the training context of (gradient) boosting. Each aggregated model is a tree whose training involves two steps: first, simple tabular models are learned descending tables in a top-down fashion with boosting's class residuals on tables' features. Second, what has been learned progresses back bottom-up via attention and aggregation mechanisms, progressively crafting new features that complete at the end the set of observation features over which a single tree is learned, boosting's iteration clock is incremented and new class residuals are computed. Experiments on simulated and real-world domains display the competitiveness of our method against a state of the art containing both tree-based and neural nets-based models.

Via

Most mathematical distortions used in ML are fundamentally integral in nature: $f$-divergences, Bregman divergences, (regularized) optimal transport distances, integral probability metrics, geodesic distances, etc. In this paper, we unveil a grounded theory and tools which can help improve these distortions to better cope with ML requirements. We start with a generalization of Riemann integration that also encapsulates functions that are not strictly additive but are, more generally, $t$-additive, as in nonextensive statistical mechanics. Notably, this recovers Volterra's product integral as a special case. We then generalize the Fundamental Theorem of calculus using an extension of the (Euclidean) derivative. This, along with a series of more specific Theorems, serves as a basis for results showing how one can specifically design, alter, or change fundamental properties of distortion measures in a simple way, with a special emphasis on geometric- and ML-related properties that are the metricity, hyperbolicity, and encoding. We show how to apply it to a problem that has recently gained traction in ML: hyperbolic embeddings with a "cheap" and accurate encoding along the hyperbolic vs Euclidean scale. We unveil a new application for which the Poincar\'e disk model has very appealing features, and our theory comes in handy: \textit{model} embeddings for boosted combinations of decision trees, trained using the log-loss (trees) and logistic loss (combinations).

Via

Tempered Exponential Measures (TEMs) are a parametric generalization of the exponential family of distributions maximizing the tempered entropy function among positive measures subject to a probability normalization of their power densities. Calculus on TEMs relies on a deformed algebra of arithmetic operators induced by the deformed logarithms used to define the tempered entropy. In this work, we introduce three different parameterizations of finite discrete TEMs via Legendre functions of the negative tempered entropy function. In particular, we establish an isometry between such parameterizations in terms of a generalization of the Hilbert log cross-ratio simplex distance to a tempered Hilbert co-simplex distance. Similar to the Hilbert geometry, the tempered Hilbert distance is characterized as a $t$-symmetrization of the oriented tempered Funk distance. We motivate our construction by introducing the notion of $t$-lengths of smooth curves in a tautological Finsler manifold. We then demonstrate the properties of our generalized structure in different settings and numerically examine the quality of its differentiable approximations for optimization in machine learning settings.

Via

In the field of optimal transport, two prominent subfields face each other: (i) unregularized optimal transport, ``\`a-la-Kantorovich'', which leads to extremely sparse plans but with algorithms that scale poorly, and (ii) entropic-regularized optimal transport, ``\`a-la-Sinkhorn-Cuturi'', which gets near-linear approximation algorithms but leads to maximally un-sparse plans. In this paper, we show that a generalization of the latter to tempered exponential measures, a generalization of exponential families with indirect measure normalization, gets to a very convenient middle ground, with both very fast approximation algorithms and sparsity which is under control up to sparsity patterns. In addition, it fits naturally in the unbalanced optimal transport problem setting as well.

Via

Tabular data represents one of the most prevalent form of data. When it comes to data generation, many approaches would learn a density for the data generation process, but would not necessarily end up with a sampler, even less so being exact with respect to the underlying density. A second issue is on models: while complex modeling based on neural nets thrives in image or text generation (etc.), less is known for powerful generative models on tabular data. A third problem is the visible chasm on tabular data between training algorithms for supervised learning with remarkable properties (e.g. boosting), and a comparative lack of guarantees when it comes to data generation. In this paper, we tackle the three problems, introducing new tree-based generative models convenient for density modeling and tabular data generation that improve on modeling capabilities of recent proposals, and a training algorithm which simplifies the training setting of previous approaches and displays boosting-compliant convergence. This algorithm has the convenient property to rely on a supervised training scheme that can be implemented by a few tweaks to the most popular induction scheme for decision tree induction with two classes. Experiments are provided on missing data imputation and comparing generated data to real data, displaying the quality of the results obtained by our approach, in particular against state of the art.

Via

One of the most popular ML algorithms, AdaBoost, can be derived from the dual of a relative entropy minimization problem subject to the fact that the positive weights on the examples sum to one. Essentially, harder examples receive higher probabilities. We generalize this setup to the recently introduced {\it tempered exponential measure}s (TEMs) where normalization is enforced on a specific power of the measure and not the measure itself. TEMs are indexed by a parameter $t$ and generalize exponential families ($t=1$). Our algorithm, $t$-AdaBoost, recovers AdaBoost~as a special case ($t=1$). We show that $t$-AdaBoost retains AdaBoost's celebrated exponential convergence rate when $t\in [0,1)$ while allowing a slight improvement of the rate's hidden constant compared to $t=1$. $t$-AdaBoost partially computes on a generalization of classical arithmetic over the reals and brings notable properties like guaranteed bounded leveraging coefficients for $t\in [0,1)$. From the loss that $t$-AdaBoost minimizes (a generalization of the exponential loss), we show how to derive a new family of {\it tempered} losses for the induction of domain-partitioning classifiers like decision trees. Crucially, strict properness is ensured for all while their boosting rates span the full known spectrum. Experiments using $t$-AdaBoost+trees display that significant leverage can be achieved by tuning $t$.

Via

There is a growing need for models that are interpretable and have reduced energy and computational cost (e.g., in health care analytics and federated learning). Examples of algorithms to train such models include logistic regression and boosting. However, one challenge facing these algorithms is that they provably suffer from label noise; this has been attributed to the joint interaction between oft-used convex loss functions and simpler hypothesis classes, resulting in too much emphasis being placed on outliers. In this work, we use the margin-based $\alpha$-loss, which continuously tunes between canonical convex and quasi-convex losses, to robustly train simple models. We show that the $\alpha$ hyperparameter smoothly introduces non-convexity and offers the benefit of "giving up" on noisy training examples. We also provide results on the Long-Servedio dataset for boosting and a COVID-19 survey dataset for logistic regression, highlighting the efficacy of our approach across multiple relevant domains.

Via

Loss functions serve as the foundation of supervised learning and are often chosen prior to model development. To avoid potentially ad hoc choices of losses, statistical decision theory describes a desirable property for losses known as \emph{properness}, which asserts that Bayes' rule is optimal. Recent works have sought to \emph{learn losses} and models jointly. Existing methods do this by fitting an inverse canonical link function which monotonically maps $\mathbb{R}$ to $[0,1]$ to estimate probabilities for binary problems. In this paper, we extend monotonicity to maps between $\mathbb{R}^{C-1}$ and the projected probability simplex $\tilde{\Delta}^{C-1}$ by using monotonicity of gradients of convex functions. We present {\sc LegendreTron} as a novel and practical method that jointly learns \emph{proper canonical losses} and probabilities for multiclass problems. Tested on a benchmark of domains with up to 1,000 classes, our experimental results show that our method consistently outperforms the natural multiclass baseline under a $t$-test at 99% significance on all datasets with greater than 10 classes.

Via

The link with exponential families has allowed $k$-means clustering to be generalized to a wide variety of data generating distributions in exponential families and clustering distortions among Bregman divergences. Getting the framework to work above exponential families is important to lift roadblocks like the lack of robustness of some population minimizers carved in their axiomatization. Current generalisations of exponential families like $q$-exponential families or even deformed exponential families fail at achieving the goal. In this paper, we provide a new attempt at getting the complete framework, grounded in a new generalisation of exponential families that we introduce, tempered exponential measures (TEM). TEMs keep the maximum entropy axiomatization framework of $q$-exponential families, but instead of normalizing the measure, normalize a dual called a co-distribution. Numerous interesting properties arise for clustering such as improved and controllable robustness for population minimizers, that keep a simple analytic form.

Via