Abstract:Computer-generated holography (CGH) has gained wide attention with deep learning-based algorithms. However, due to its nonlinear and ill-posed nature, challenges remain in achieving accurate and stable reconstruction. Specifically, ($i$) the widely used end-to-end networks treat the reconstruction model as a black box, ignoring underlying physical relationships, which reduces interpretability and flexibility. ($ii$) CNN-based CGH algorithms have limited receptive fields, hindering their ability to capture long-range dependencies and global context. ($iii$) Angular spectrum method (ASM)-based models are constrained to finite near-fields.In this paper, we propose a Deep Unfolding Network (DUN) that decomposes gradient descent into two modules: an adaptive bandwidth-preserving model (ABPM) and a phase-domain complex-valued denoiser (PCD), providing more flexibility. ABPM allows for wider working distances compared to ASM-based methods. At the same time, PCD leverages its complex-valued deformable self-attention module to capture global features and enhance performance, achieving a PSNR over 35 dB. Experiments on simulated and real data show state-of-the-art results.
Abstract:Spinal curvature estimation is important to the diagnosis and treatment of the scoliosis. Existing methods face several issues such as the need of expensive annotations on the vertebral landmarks and being sensitive to the image quality. It is challenging to achieve robust estimation and obtain interpretable results, especially for low-quality images which are blurry and hazy. In this paper, we propose B-Spine, a novel deep learning pipeline to learn B-spline curve representation of the spine and estimate the Cobb angles for spinal curvature estimation from low-quality X-ray images. Given a low-quality input, a novel SegRefine network which employs the unpaired image-to-image translation is proposed to generate a high quality spine mask from the initial segmentation result. Next, a novel mask-based B-spline prediction model is proposed to predict the B-spline curve for the spine centerline. Finally, the Cobb angles are estimated by a hybrid approach which combines the curve slope analysis and a curve-based regression model. We conduct quantitative and qualitative comparisons with the representative and SOTA learning-based methods on the public AASCE2019 dataset and our new proposed CJUH-JLU dataset which contains more challenging low-quality images. The superior performance on both datasets shows our method can achieve both robustness and interpretability for spinal curvature estimation.