Oregon State University
Abstract:Reward functions are often misspecified. An agent optimizing an incorrect reward function can change its environment in large, undesirable, and potentially irreversible ways. Work on impact measurement seeks a means of identifying (and thereby avoiding) large changes to the environment. We propose a novel impact measure which induces conservative, effective behavior across a range of situations. The approach attempts to preserve the attainable utility of auxiliary objectives. We evaluate our proposal on an array of benchmark tasks and show that it matches or outperforms relative reachability, the state-of-the-art in impact measurement.
Abstract:We consider the problem of explaining the decisions of deep neural networks for image recognition in terms of human-recognizable visual concepts. In particular, given a test set of images, we aim to explain each classification in terms of a small number of image regions, or activation maps, which have been associated with semantic concepts by a human annotator. This allows for generating summary views of the typical reasons for classifications, which can help build trust in a classifier and/or identify example types for which the classifier may not be trusted. For this purpose, we developed a user interface for "interactive naming," which allows a human annotator to manually cluster significant activation maps in a test set into meaningful groups called "visual concepts". The main contribution of this paper is a systematic study of the visual concepts produced by five human annotators using the interactive naming interface. In particular, we consider the adequacy of the concepts for explaining the classification of test-set images, correspondence of the concepts to activations of individual neurons, and the inter-annotator agreement of visual concepts. We find that a large fraction of the activation maps have recognizable visual concepts, and that there is significant agreement between the different annotators about their denotations. Our work is an exploratory study of the interplay between machine learning and human recognition mediated by visualizations of the results of learning.
Abstract:Scripts have been proposed to model the stereotypical event sequences found in narratives. They can be applied to make a variety of inferences including filling gaps in the narratives and resolving ambiguous references. This paper proposes the first formal framework for scripts based on Hidden Markov Models (HMMs). Our framework supports robust inference and learning algorithms, which are lacking in previous clustering models. We develop an algorithm for structure and parameter learning based on Expectation Maximization and evaluate it on a number of natural datasets. The results show that our algorithm is superior to several informed baselines for predicting missing events in partial observation sequences.
Abstract:Recognizing sarcasm often requires a deep understanding of multiple sources of information, including the utterance, the conversational context, and real world facts. Most of the current sarcasm detection systems consider only the utterance in isolation. There are some limited attempts toward taking into account the conversational context. In this paper, we propose an interpretable end-to-end model that combines information from both the utterance and the conversational context to detect sarcasm, and demonstrate its effectiveness through empirical evaluations. We also study the behavior of the proposed model to provide explanations for the model's decisions. Importantly, our model is capable of determining the impact of utterance and conversational context on the model's decisions. Finally, we provide an ablation study to illustrate the impact of different components of the proposed model.
Abstract:Detecting events and classifying them into predefined types is an important step in knowledge extraction from natural language texts. While the neural network models have generally led the state-of-the-art, the differences in performance between different architectures have not been rigorously studied. In this paper we present a novel GRU-based model that combines syntactic information along with temporal structure through an attention mechanism. We show that it is competitive with other neural network architectures through empirical evaluations under different random initializations and training-validation-test splits of ACE2005 dataset.
Abstract:Deep learning models have achieved remarkable success in natural language inference (NLI) tasks. While these models are widely explored, they are hard to interpret and it is often unclear how and why they actually work. In this paper, we take a step toward explaining such deep learning based models through a case study on a popular neural model for NLI. In particular, we propose to interpret the intermediate layers of NLI models by visualizing the saliency of attention and LSTM gating signals. We present several examples for which our methods are able to reveal interesting insights and identify the critical information contributing to the model decisions.
Abstract:In this paper, we present a novel model for entity disambiguation that combines both local contextual information and global evidences through Limited Discrepancy Search (LDS). Given an input document, we start from a complete solution constructed by a local model and conduct a search in the space of possible corrections to improve the local solution from a global view point. Our search utilizes a heuristic function to focus more on the least confident local decisions and a pruning function to score the global solutions based on their local fitness and the global coherences among the predicted entities. Experimental results on CoNLL 2003 and TAC 2010 benchmarks verify the effectiveness of our model.
Abstract:We present a novel deep learning architecture to address the cloze-style question answering task. Existing approaches employ reading mechanisms that do not fully exploit the interdependency between the document and the query. In this paper, we propose a novel \emph{dependent gated reading} bidirectional GRU network (DGR) to efficiently model the relationship between the document and the query during encoding and decision making. Our evaluation shows that DGR obtains highly competitive performance on well-known machine comprehension benchmarks such as the Children's Book Test (CBT-NE and CBT-CN) and Who DiD What (WDW, Strict and Relaxed). Finally, we extensively analyze and validate our model by ablation and attention studies.
Abstract:Traditional event detection methods heavily rely on manually engineered rich features. Recent deep learning approaches alleviate this problem by automatic feature engineering. But such efforts, like tradition methods, have so far only focused on single-token event mentions, whereas in practice events can also be a phrase. We instead use forward-backward recurrent neural networks (FBRNNs) to detect events that can be either words or phrases. To the best our knowledge, this is one of the first efforts to handle multi-word events and also the first attempt to use RNNs for event detection. Experimental results demonstrate that FBRNN is competitive with the state-of-the-art methods on the ACE 2005 and the Rich ERE 2015 event detection tasks.
Abstract:Coactive learning is an online problem solving setting where the solutions provided by a solver are interactively improved by a domain expert, which in turn drives learning. In this paper we extend the study of coactive learning to problems where obtaining a globally optimal or near-optimal solution may be intractable or where an expert can only be expected to make small, local improvements to a candidate solution. The goal of learning in this new setting is to minimize the cost as measured by the expert effort over time. We first establish theoretical bounds on the average cost of the existing coactive Perceptron algorithm. In addition, we consider new online algorithms that use cost-sensitive and Passive-Aggressive (PA) updates, showing similar or improved theoretical bounds. We provide an empirical evaluation of the learners in various domains, which show that the Perceptron based algorithms are quite effective and that unlike the case for online classification, the PA algorithms do not yield significant performance gains.