Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promising paradigm for enhancing reasoning in Large Language Models (LLMs). However, it frequently encounters challenges such as entropy collapse, excessive verbosity, and insufficient exploration for hard problems. Crucially, existing reward schemes fail to distinguish between the need for extensive search during problem-solving and the efficiency required for mastered knowledge. In this work, we introduce T2T(Thickening-to-Thinning), a dynamic reward framework inspired by human learning processes. Specifically, it implements a dual-phase mechanism: (1) On incorrect attempts, T2T incentivizes "thickening" (longer trajectories) to broaden the search space and explore novel solution paths; (2) Upon achieving correctness, it shifts to "thinning", imposing length penalties to discourage redundancy, thereby fostering model confidence and crystallizing reasoning capabilities. Extensive experiments on mathematical benchmarks (MATH-500, AIME, AMC) across Qwen-series and Deepseek models demonstrate that T2T significantly outperforms standard GRPO and recent baselines, achieving superior performance.
Abstract:Agentic reinforcement learning increasingly relies on experience-driven scaling, yet real-world environments remain non-adaptive, limited in coverage, and difficult to scale. World models offer a potential way to improve learning efficiency through simulated experience, but it remains unclear whether large language models can reliably serve this role and under what conditions they meaningfully benefit agents. We study these questions in text-based environments, which provide a controlled setting to reinterpret language modeling as next-state prediction under interaction. We introduce a three-level framework for evaluating LLM-based world models: (i) fidelity and consistency, (ii) scalability and robustness, and (iii) agent utility. Across five representative environments, we find that sufficiently trained world models maintain coherent latent state, scale predictably with data and model size, and improve agent performance via action verification, synthetic trajectory generation, and warm-starting reinforcement learning. Meanwhile, these gains depend critically on behavioral coverage and environment complexity, delineating clear boundry on when world modeling effectively supports agent learning.