Alert button
Picture for Philippe Lambin

Philippe Lambin

Alert button

MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain Adaptation for Breast MRI Segmentation in Small Datasets

Add code
Bookmark button
Alert button
Jan 04, 2023
Sheng Kuang, Henry C. Woodruff, Renee Granzier, Thiemo J. A. van Nijnatten, Marc B. I. Lobbes, Marjolein L. Smidt, Philippe Lambin, Siamak Mehrkanoon

Figure 1 for MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain Adaptation for Breast MRI Segmentation in Small Datasets
Figure 2 for MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain Adaptation for Breast MRI Segmentation in Small Datasets
Figure 3 for MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain Adaptation for Breast MRI Segmentation in Small Datasets
Figure 4 for MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain Adaptation for Breast MRI Segmentation in Small Datasets
Viaarxiv icon

Precision-medicine-toolbox: An open-source python package for facilitation of quantitative medical imaging and radiomics analysis

Add code
Bookmark button
Alert button
Feb 28, 2022
Sergey Primakov, Elizaveta Lavrova, Zohaib Salahuddin, Henry C Woodruff, Philippe Lambin

Figure 1 for Precision-medicine-toolbox: An open-source python package for facilitation of quantitative medical imaging and radiomics analysis
Figure 2 for Precision-medicine-toolbox: An open-source python package for facilitation of quantitative medical imaging and radiomics analysis
Figure 3 for Precision-medicine-toolbox: An open-source python package for facilitation of quantitative medical imaging and radiomics analysis
Figure 4 for Precision-medicine-toolbox: An open-source python package for facilitation of quantitative medical imaging and radiomics analysis
Viaarxiv icon

Data Harmonisation for Information Fusion in Digital Healthcare: A State-of-the-Art Systematic Review, Meta-Analysis and Future Research Directions

Add code
Bookmark button
Alert button
Jan 17, 2022
Yang Nan, Javier Del Ser, Simon Walsh, Carola Schönlieb, Michael Roberts, Ian Selby, Kit Howard, John Owen, Jon Neville, Julien Guiot, Benoit Ernst, Ana Pastor, Angel Alberich-Bayarri, Marion I. Menzel, Sean Walsh, Wim Vos, Nina Flerin, Jean-Paul Charbonnier, Eva van Rikxoort, Avishek Chatterjee, Henry Woodruff, Philippe Lambin, Leonor Cerdá-Alberich, Luis Martí-Bonmatí, Francisco Herrera, Guang Yang

Figure 1 for Data Harmonisation for Information Fusion in Digital Healthcare: A State-of-the-Art Systematic Review, Meta-Analysis and Future Research Directions
Figure 2 for Data Harmonisation for Information Fusion in Digital Healthcare: A State-of-the-Art Systematic Review, Meta-Analysis and Future Research Directions
Figure 3 for Data Harmonisation for Information Fusion in Digital Healthcare: A State-of-the-Art Systematic Review, Meta-Analysis and Future Research Directions
Figure 4 for Data Harmonisation for Information Fusion in Digital Healthcare: A State-of-the-Art Systematic Review, Meta-Analysis and Future Research Directions
Viaarxiv icon

Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods

Add code
Bookmark button
Alert button
Nov 01, 2021
Zohaib Salahuddin, Henry C Woodruff, Avishek Chatterjee, Philippe Lambin

Figure 1 for Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Figure 2 for Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Figure 3 for Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Figure 4 for Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Viaarxiv icon

FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging

Add code
Bookmark button
Alert button
Sep 29, 2021
Karim Lekadir, Richard Osuala, Catherine Gallin, Noussair Lazrak, Kaisar Kushibar, Gianna Tsakou, Susanna Aussó, Leonor Cerdá Alberich, Kostas Marias, Manolis Tsiknakis, Sara Colantonio, Nickolas Papanikolaou, Zohaib Salahuddin, Henry C Woodruff, Philippe Lambin, Luis Martí-Bonmatí

Figure 1 for FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging
Figure 2 for FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging
Viaarxiv icon