Abstract:Automation of sleep analysis, including both macrostructural (sleep stages) and microstructural (e.g., sleep spindles) elements, promises to enable large-scale sleep studies and to reduce variance due to inter-rater incongruencies. While individual steps, such as sleep staging and spindle detection, have been studied separately, the feasibility of automating multi-step sleep analysis remains unclear. Here, we evaluate whether a fully automated analysis using state-of-the-art machine learning models for sleep staging (RobustSleepNet) and subsequent spindle detection (SUMOv2) can replicate findings from an expert-based study of bipolar disorder. The automated analysis qualitatively reproduced key findings from the expert-based study, including significant differences in fast spindle densities between bipolar patients and healthy controls, accomplishing in minutes what previously took months to complete manually. While the results of the automated analysis differed quantitatively from the expert-based study, possibly due to biases between expert raters or between raters and the models, the models individually performed at or above inter-rater agreement for both sleep staging and spindle detection. Our results demonstrate that fully automated approaches have the potential to facilitate large-scale sleep research. We are providing public access to the tools used in our automated analysis by sharing our code and introducing SomnoBot, a privacy-preserving sleep analysis platform.
Abstract:Weather forecasting is essential for facilitating diverse socio-economic activity and environmental conservation initiatives. Deep learning techniques are increasingly being explored as complementary approaches to Numerical Weather Prediction (NWP) models, offering potential benefits such as reduced complexity and enhanced adaptability in specific applications. This work presents a novel design, Small Shuffled Attention UNet (SSA-UNet), which enhances SmaAt-UNet's architecture by including a shuffle channeling mechanism to optimize performance and diminish complexity. To assess its efficacy, this architecture and its reduced variant are examined and trained on two datasets: a Dutch precipitation dataset from 2016 to 2019, and a French cloud cover dataset containing radar images from 2017 to 2018. Three output configurations of the proposed architecture are evaluated, yielding outputs of 1, 6, and 12 precipitation maps, respectively. To better understand how this model operates and produces its predictions, a gradient-based approach called Grad-CAM is used to analyze the outputs generated. The analysis of heatmaps generated by Grad-CAM facilitated the identification of regions within the input maps that the model considers most informative for generating its predictions. The implementation of SSA-UNet can be found on our Github\footnote{\href{https://github.com/MarcoTurzi/SSA-UNet}{https://github.com/MarcoTurzi/SSA-UNet}}
Abstract:In recent years, data-driven, deep learning-based approaches for precipitation nowcasting have attracted significant attention, showing promising results. However, many existing models fail to fully exploit the extensive atmospheric information available, relying primarily on precipitation data alone. This study introduces two novel deep learning architectures, SmaAt-fUsion and SmaAt-Krige-GNet, specifically designed to enhance precipitation nowcasting by integrating multi-variable weather station data with radar datasets. By leveraging additional meteorological information, these models improve representation learning in the latent space, resulting in enhanced nowcasting performance. The SmaAt-fUsion model extends the SmaAt-UNet framework by incorporating weather station data through a convolutional layer, integrating it into the bottleneck of the network. Conversely, the SmaAt-Krige-GNet model combines precipitation maps with weather station data processed using Kriging, a geo-statistical interpolation method, to generate variable-specific maps. These maps are then utilized in a dual-encoder architecture based on SmaAt-GNet, allowing multi-level data integration. Experimental evaluations were conducted using four years (2016--2019) of weather station and precipitation radar data from the Netherlands. Results demonstrate that SmaAt-Krige-GNet outperforms the standard SmaAt-UNet, which relies solely on precipitation radar data, in low precipitation scenarios, while SmaAt-fUsion surpasses SmaAt-UNet in both low and high precipitation scenarios. This highlights the potential of incorporating discrete weather station data to enhance the performance of deep learning-based weather nowcasting models.
Abstract:Nowcasting, the short-term prediction of weather, is essential for making timely and weather-dependent decisions. Specifically, precipitation nowcasting aims to predict precipitation at a local level within a 6-hour time frame. This task can be framed as a spatial-temporal sequence forecasting problem, where deep learning methods have been particularly effective. However, despite advancements in self-supervised learning, most successful methods for nowcasting remain fully supervised. Self-supervised learning is advantageous for pretraining models to learn representations without requiring extensive labeled data. In this work, we leverage the benefits of self-supervised learning and integrate it with spatial-temporal learning to develop a novel model, SpaT-SparK. SpaT-SparK comprises a CNN-based encoder-decoder structure pretrained with a masked image modeling (MIM) task and a translation network that captures temporal relationships among past and future precipitation maps in downstream tasks. We conducted experiments on the NL-50 dataset to evaluate the performance of SpaT-SparK. The results demonstrate that SpaT-SparK outperforms existing baseline supervised models, such as SmaAt-UNet, providing more accurate nowcasting predictions.
Abstract:Analyzing electroencephalographic (EEG) time series can be challenging, especially with deep neural networks, due to the large variability among human subjects and often small datasets. To address these challenges, various strategies, such as self-supervised learning, have been suggested, but they typically rely on extensive empirical datasets. Inspired by recent advances in computer vision, we propose a pretraining task termed "frequency pretraining" to pretrain a neural network for sleep staging by predicting the frequency content of randomly generated synthetic time series. Our experiments demonstrate that our method surpasses fully supervised learning in scenarios with limited data and few subjects, and matches its performance in regimes with many subjects. Furthermore, our results underline the relevance of frequency information for sleep stage scoring, while also demonstrating that deep neural networks utilize information beyond frequencies to enhance sleep staging performance, which is consistent with previous research. We anticipate that our approach will be advantageous across a broad spectrum of applications where EEG data is limited or derived from a small number of subjects, including the domain of brain-computer interfaces.
Abstract:In recent years, data-driven modeling approaches have gained considerable traction in various meteorological applications, particularly in the realm of weather forecasting. However, these approaches often encounter challenges when dealing with extreme weather conditions. In light of this, we propose GA-SmaAt-GNet, a novel generative adversarial architecture that makes use of two methodologies aimed at enhancing the performance of deep learning models for extreme precipitation nowcasting. Firstly, it uses a novel SmaAt-GNet built upon the successful SmaAt-UNet architecture as generator. This network incorporates precipitation masks (binarized precipitation maps) as an additional data source, leveraging valuable information for improved predictions. Additionally, GA-SmaAt-GNet utilizes an attention-augmented discriminator inspired by the well-established Pix2Pix architecture. Furthermore, we assess the performance of GA-SmaAt-GNet using real-life precipitation dataset from the Netherlands. Our experimental results reveal a notable improvement in both overall performance and for extreme precipitation events. Furthermore, we conduct uncertainty analysis on the proposed GA-SmaAt-GNet model as well as on the precipitation dataset, providing additional insights into the predictive capabilities of the model. Finally, we offer further insights into the predictions of our proposed model using Grad-CAM. This visual explanation technique generates activation heatmaps, illustrating areas of the input that are more activated for various parts of the network.
Abstract:Accurate precipitation nowcasting is essential for various purposes, including flood prediction, disaster management, optimizing agricultural activities, managing transportation routes and renewable energy. While several studies have addressed this challenging task from a sequence-to-sequence perspective, most of them have focused on a single area without considering the existing correlation between multiple disjoint regions. In this paper, we formulate precipitation nowcasting as a spatiotemporal graph sequence nowcasting problem. In particular, we introduce Graph Dual-stream Convolutional Attention Fusion (GD-CAF), a novel approach designed to learn from historical spatiotemporal graph of precipitation maps and nowcast future time step ahead precipitation at different spatial locations. GD-CAF consists of spatio-temporal convolutional attention as well as gated fusion modules which are equipped with depthwise-separable convolutional operations. This enhancement enables the model to directly process the high-dimensional spatiotemporal graph of precipitation maps and exploits higher-order correlations between the data dimensions. We evaluate our model on seven years of precipitation maps across Europe and its neighboring areas collected from the ERA5 dataset, provided by Copernicus. The model receives a fully connected graph in which each node represents historical observations from a specific region on the map. Consequently, each node contains a 3D tensor with time, height, and width dimensions. Experimental results demonstrate that the proposed GD-CAF model outperforms the other examined models. Furthermore, the averaged seasonal spatial and temporal attention scores over the test set are visualized to provide additional insights about the strongest connections between different regions or time steps. These visualizations shed light on the decision-making process of our model.
Abstract:Self-supervised learning addresses the challenge encountered by many supervised methods, i.e. the requirement of large amounts of annotated data. This challenge is particularly pronounced in fields such as the electroencephalography (EEG) research domain. Self-supervised learning operates instead by utilizing pseudo-labels, which are generated by pretext tasks, to obtain a rich and meaningful data representation. In this study, we aim at introducing a dual-stream pretext task architecture that operates both in the time and frequency domains. In particular, we have examined the incorporation of the novel Frequency Similarity (FS) pretext task into two existing pretext tasks, Relative Positioning (RP) and Temporal Shuffling (TS). We assess the accuracy of these models using the Physionet Challenge 2018 (PC18) dataset in the context of the downstream task sleep stage classification. The inclusion of FS resulted in a notable improvement in downstream task accuracy, with a 1.28 percent improvement on RP and a 2.02 percent improvement on TS. Furthermore, when visualizing the learned embeddings using Uniform Manifold Approximation and Projection (UMAP), distinct clusters emerge, indicating that the learned representations carry meaningful information.
Abstract:This paper proposes an interpretable two-stream transformer CORAL networks (TransCORALNet) for supply chain credit assessment under the segment industry and cold start problem. The model aims to provide accurate credit assessment prediction for new supply chain borrowers with limited historical data. Here, the two-stream domain adaptation architecture with correlation alignment (CORAL) loss is used as a core model and is equipped with transformer, which provides insights about the learned features and allow efficient parallelization during training. Thanks to the domain adaptation capability of the proposed model, the domain shift between the source and target domain is minimized. Therefore, the model exhibits good generalization where the source and target do not follow the same distribution, and a limited amount of target labeled instances exist. Furthermore, we employ Local Interpretable Model-agnostic Explanations (LIME) to provide more insight into the model prediction and identify the key features contributing to supply chain credit assessment decisions. The proposed model addresses four significant supply chain credit assessment challenges: domain shift, cold start, imbalanced-class and interpretability. Experimental results on a real-world data set demonstrate the superiority of TransCORALNet over a number of state-of-the-art baselines in terms of accuracy. The code is available on GitHub https://github.com/JieJieNiu/TransCORALN .
Abstract:The accuracy and explainability of data-driven nowcasting models are of great importance in many socio-economic sectors reliant on weather-dependent decision making. This paper proposes a novel architecture called Small Attention Residual UNet (SAR-UNet) for precipitation and cloud cover nowcasting. Here, SmaAt-UNet is used as a core model and is further equipped with residual connections, parallel to the depthwise separable convolutions. The proposed SAR-UNet model is evaluated on two datasets, i.e., Dutch precipitation maps ranging from 2016 to 2019 and French cloud cover binary images from 2017 to 2018. The obtained results show that SAR-UNet outperforms other examined models in precipitation nowcasting from 30 to 180 minutes in the future as well as cloud cover nowcasting in the next 90 minutes. Furthermore, we provide additional insights on the nowcasts made by our proposed model using Grad-CAM, a visual explanation technique, which is employed on different levels of the encoder and decoder paths of the SAR-UNet model and produces heatmaps highlighting the critical regions in the input image as well as intermediate representations to the precipitation. The heatmaps generated by Grad-CAM reveal the interactions between the residual connections and the depthwise separable convolutions inside of the multiple depthwise separable blocks placed throughout the network architecture.