Alert button
Picture for Olivia Weng

Olivia Weng

Alert button

Tailor: Altering Skip Connections for Resource-Efficient Inference

Jan 18, 2023
Olivia Weng, Gabriel Marcano, Vladimir Loncar, Alireza Khodamoradi, Nojan Sheybani, Farinaz Koushanfar, Kristof Denolf, Javier Mauricio Duarte, Ryan Kastner

Figure 1 for Tailor: Altering Skip Connections for Resource-Efficient Inference
Figure 2 for Tailor: Altering Skip Connections for Resource-Efficient Inference
Figure 3 for Tailor: Altering Skip Connections for Resource-Efficient Inference
Figure 4 for Tailor: Altering Skip Connections for Resource-Efficient Inference
Viaarxiv icon

Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark

Jun 23, 2022
Hendrik Borras, Giuseppe Di Guglielmo, Javier Duarte, Nicolò Ghielmetti, Ben Hawks, Scott Hauck, Shih-Chieh Hsu, Ryan Kastner, Jason Liang, Andres Meza, Jules Muhizi, Tai Nguyen, Rushil Roy, Nhan Tran, Yaman Umuroglu, Olivia Weng, Aidan Yokuda, Michaela Blott

Figure 1 for Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
Figure 2 for Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
Figure 3 for Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
Figure 4 for Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
Viaarxiv icon

Neural Network Quantization for Efficient Inference: A Survey

Dec 08, 2021
Olivia Weng

Figure 1 for Neural Network Quantization for Efficient Inference: A Survey
Figure 2 for Neural Network Quantization for Efficient Inference: A Survey
Figure 3 for Neural Network Quantization for Efficient Inference: A Survey
Figure 4 for Neural Network Quantization for Efficient Inference: A Survey
Viaarxiv icon

Applications and Techniques for Fast Machine Learning in Science

Oct 25, 2021
Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, Ashish Sharma, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng

Figure 1 for Applications and Techniques for Fast Machine Learning in Science
Figure 2 for Applications and Techniques for Fast Machine Learning in Science
Figure 3 for Applications and Techniques for Fast Machine Learning in Science
Figure 4 for Applications and Techniques for Fast Machine Learning in Science
Viaarxiv icon

Hardware-efficient Residual Networks for FPGAs

Feb 02, 2021
Olivia Weng, Alireza Khodamoradi, Ryan Kastner

Figure 1 for Hardware-efficient Residual Networks for FPGAs
Figure 2 for Hardware-efficient Residual Networks for FPGAs
Figure 3 for Hardware-efficient Residual Networks for FPGAs
Viaarxiv icon