Abstract:Open-sourcing foundation models (FMs) enables broad reuse but also exposes model trainers to economic and safety risks from unrestricted downstream fine-tuning. We address this problem by building non-fine-tunable foundation models: models that remain broadly usable in their released form while yielding limited adaptation gains under task-agnostic unauthorized fine-tuning. We propose Private Mask Pre-Training (PMP), a pre-training framework that concentrates representation learning into a sparse subnetwork identified early in training. The binary mask defining this subnetwork is kept private, and only the final dense weights are released. This forces unauthorized fine-tuning without access to the mask to update parameters misaligned with pretraining subspace, inducing an intrinsic mismatch between the fine-tuning objective and the pre-training geometry. We provide theoretical analysis showing that this mismatch destabilizes gradient-based adaptation and bounds fine-tuning gains. Empirical results on large language models demonstrating that PMP preserves base model performance while consistently degrading unauthorized fine-tuning across a wide range of downstream tasks, with the strength of non-fine-tunability controlled by the mask ratio.
Abstract:Jailbreak attacks can circumvent model safety guardrails and reveal critical blind spots. Prior attacks on text-to-video (T2V) models typically add adversarial perturbations to obviously unsafe prompts, which are often easy to detect and defend. In contrast, we show that benign-looking prompts containing rich, implicit cues can induce T2V models to generate semantically unsafe videos that both violate policy and preserve the original (blocked) intent. To realize this, we propose VEIL, a jailbreak framework that leverages T2V models' cross-modal associative patterns via a modular prompt design. Specifically, our prompts combine three components: neutral scene anchors, which provide the surface-level scene description extracted from the blocked intent to maintain plausibility; latent auditory triggers, textual descriptions of innocuous-sounding audio events (e.g., creaking, muffled noises) that exploit learned audio-visual co-occurrence priors to bias the model toward particular unsafe visual concepts; and stylistic modulators, cinematic directives (e.g., camera framing, atmosphere) that amplify and stabilize the latent trigger's effect. We formalize attack generation as a constrained optimization over the above modular prompt space and solve it with a guided search procedure that balances stealth and effectiveness. Extensive experiments over 7 T2V models demonstrate the efficacy of our attack, achieving a 23 percent improvement in average attack success rate in commercial models.