Abstract:Table structure recognition aims to extract the logical and physical structure of unstructured table images into a machine-readable format. The latest end-to-end image-to-text approaches simultaneously predict the two structures by two decoders, where the prediction of the physical structure (the bounding boxes of the cells) is based on the representation of the logical structure. However, the previous methods struggle with imprecise bounding boxes as the logical representation lacks local visual information. To address this issue, we propose an end-to-end sequential modeling framework for table structure recognition called VAST. It contains a novel coordinate sequence decoder triggered by the representation of the non-empty cell from the logical structure decoder. In the coordinate sequence decoder, we model the bounding box coordinates as a language sequence, where the left, top, right and bottom coordinates are decoded sequentially to leverage the inter-coordinate dependency. Furthermore, we propose an auxiliary visual-alignment loss to enforce the logical representation of the non-empty cells to contain more local visual details, which helps produce better cell bounding boxes. Extensive experiments demonstrate that our proposed method can achieve state-of-the-art results in both logical and physical structure recognition. The ablation study also validates that the proposed coordinate sequence decoder and the visual-alignment loss are the keys to the success of our method.
Abstract:In this paper, to deal with the heterogeneity in federated learning (FL) systems, a knowledge distillation (KD) driven training framework for FL is proposed, where each user can select its neural network model on demand and distill knowledge from a big teacher model using its own private dataset. To overcome the challenge of train the big teacher model in resource limited user devices, the digital twin (DT) is exploit in the way that the teacher model can be trained at DT located in the server with enough computing resources. Then, during model distillation, each user can update the parameters of its model at either the physical entity or the digital agent. The joint problem of model selection and training offloading and resource allocation for users is formulated as a mixed integer programming (MIP) problem. To solve the problem, Q-learning and optimization are jointly used, where Q-learning selects models for users and determines whether to train locally or on the server, and optimization is used to allocate resources for users based on the output of Q-learning. Simulation results show the proposed DT-assisted KD framework and joint optimization method can significantly improve the average accuracy of users while reducing the total delay.
Abstract:Word-level textual adversarial attacks have achieved striking performance in fooling natural language processing models. However, the fundamental questions of why these attacks are effective, and the intrinsic properties of the adversarial examples (AEs), are still not well understood. This work attempts to interpret textual attacks through the lens of $n$-gram frequency. Specifically, it is revealed that existing word-level attacks exhibit a strong tendency toward generation of examples with $n$-gram frequency descend ($n$-FD). Intuitively, this finding suggests a natural way to improve model robustness by training the model on the $n$-FD examples. To verify this idea, we devise a model-agnostic and gradient-free AE generation approach that relies solely on the $n$-gram frequency information, and further integrate it into the recently proposed convex hull framework for adversarial training. Surprisingly, the resultant method performs quite similarly to the original gradient-based method in terms of model robustness. These findings provide a human-understandable perspective for interpreting word-level textual adversarial attacks, and a new direction to improve model robustness.
Abstract:This paper introduces a Generative Adversarial Nets (GAN) based, Load Profile Inpainting Network (Load-PIN) for restoring missing load data segments and estimating the baseline for a demand response event. The inputs are time series load data before and after the inpainting period together with explanatory variables (e.g., weather data). We propose a Generator structure consisting of a coarse network and a fine-tuning network. The coarse network provides an initial estimation of the data segment in the inpainting period. The fine-tuning network consists of self-attention blocks and gated convolution layers for adjusting the initial estimations. Loss functions are specially designed for the fine-tuning and the discriminator networks to enhance both the point-to-point accuracy and realisticness of the results. We test the Load-PIN on three real-world data sets for two applications: patching missing data and deriving baselines of conservation voltage reduction (CVR) events. We benchmark the performance of Load-PIN with five existing deep-learning methods. Our simulation results show that, compared with the state-of-the-art methods, Load-PIN can handle varying-length missing data events and achieve 15-30% accuracy improvement.
Abstract:Multiple-input multiple-output and orthogonal frequency-division multiplexing (MIMO-OFDM) are the key technologies in 4G and subsequent wireless communication systems. Conventionally, the MIMO-OFDM receiver is performed by multiple cascaded blocks with different functions and the algorithm in each block is designed based on ideal assumptions of wireless channel distributions. However, these assumptions may fail in practical complex wireless environments. The deep learning (DL) method has the ability to capture key features from complex and huge data. In this paper, a novel end-to-end MIMO-OFDM receiver framework based on \textit{transformer}, named SigT, is proposed. By regarding the signal received from each antenna as a token of the transformer, the spatial correlation of different antennas can be learned and the critical zero-shot problem can be mitigated. Furthermore, the proposed SigT framework can work well without the inserted pilots, which improves the useful data transmission efficiency. Experiment results show that SigT achieves much higher performance in terms of signal recovery accuracy than benchmark methods, even in a low SNR environment or with a small number of training samples. Code is available at https://github.com/SigTransformer/SigT.
Abstract:This paper presents a deep-learning framework, Multi-load Generative Adversarial Network (MultiLoad-GAN), for generating a group of load profiles in one shot. The main contribution of MultiLoad-GAN is the capture of spatial-temporal correlations among a group of loads to enable the generation of realistic synthetic load profiles in large quantity for meeting the emerging need in distribution system planning. The novelty and uniqueness of the MultiLoad-GAN framework are three-fold. First, it generates a group of load profiles bearing realistic spatial-temporal correlations in one shot. Second, two complementary metrics for evaluating realisticness of generated load profiles are developed: statistics metrics based on domain knowledge and a deep-learning classifier for comparing high-level features. Third, to tackle data scarcity, a novel iterative data augmentation mechanism is developed to generate training samples for enhancing the training of both the classifier and the MultiLoad-GAN model. Simulation results show that MultiLoad-GAN outperforms state-of-the-art approaches in realisticness, computational efficiency, and robustness. With little finetuning, the MultiLoad-GAN approach can be readily extended to generate a group of load or PV profiles for a feeder, a substation, or a service area.
Abstract:On-demand service provisioning is a critical yet challenging issue in 6G wireless communication networks, since emerging services have significantly diverse requirements and the network resources become increasingly heterogeneous and dynamic. In this paper, we study the on-demand wireless resource orchestration problem with the focus on the computing delay in orchestration decision-making process. Specifically, we take the decision-making delay into the optimization problem. Then, a dynamic neural network (DyNN)-based method is proposed, where the model complexity can be adjusted according to the service requirements. We further build a knowledge base representing the relationship among the service requirements, available computing resources, and the resource allocation performance. By exploiting the knowledge, the width of DyNN can be selected in a timely manner, further improving the performance of orchestration. Simulation results show that the proposed scheme significantly outperforms the traditional static neural network, and also shows sufficient flexibility in on-demand service provisioning.
Abstract:This paper presents a smart meter phase identification algorithm for two cases: meter-phase-label-known and meter-phase-label-unknown. To improve the identification accuracy, a data segmentation method is proposed to exclude data segments that are collected when the voltage correlation between smart meters on the same phase are weakened. Then, using the selected data segments, a hierarchical clustering method is used to calculate the correlation distances and cluster the smart meters. If the phase labels are unknown, a Connected-Triple-based Similarity (CTS) method is adapted to further improve the phase identification accuracy of the ensemble clustering method. The methods are developed and tested on both synthetic and real feeder data sets. Simulation results show that the proposed phase identification algorithm outperforms the state-of-the-art methods in both accuracy and robustness.
Abstract:This paper proposes a two-stage PV forecasting framework for MW-level PV farms based on Temporal Convolutional Network (TCN). In the day-ahead stage, inverter-level physics-based model is built to convert Numerical Weather Prediction (NWP) to hourly power forecasts. TCN works as the NWP blender to merge different NWP sources to improve the forecasting accuracy. In the real-time stage, TCN can leverage the spatial-temporal correlations between the target site and its neighbors to achieve intra-hour power forecasts. A scenario-based correlation analysis method is proposed to automatically identify the most contributive neighbors. Simulation results based on 95 PV farms in North Carolina demonstrate the accuracy and efficiency of the proposed method.
Abstract:The field of adversarial textual attack has significantly grown over the last years, where the commonly considered objective is to craft adversarial examples that can successfully fool the target models. However, the imperceptibility of attacks, which is also an essential objective, is often left out by previous studies. In this work, we advocate considering both objectives at the same time, and propose a novel multi-optimization approach (dubbed HydraText) with provable performance guarantee to achieve successful attacks with high imperceptibility. We demonstrate the efficacy of HydraText through extensive experiments under both score-based and decision-based settings, involving five modern NLP models across five benchmark datasets. In comparison to existing state-of-the-art attacks, HydraText consistently achieves simultaneously higher success rates, lower modification rates, and higher semantic similarity to the original texts. A human evaluation study shows that the adversarial examples crafted by HydraText maintain validity and naturality well. Finally, these examples also exhibit good transferability and can bring notable robustness improvement to the target models by adversarial training.