Abstract:The effectiveness of large language models (LLMs) in conversational AI is hindered by their reliance on single-turn supervised fine-tuning (SFT) data, which limits contextual coherence in multi-turn dialogues. Existing methods for generating multi-turn dialogue data struggle to ensure both diversity and quality in instructions. To address this, we propose Review-Instruct, a novel framework that synthesizes multi-turn conversations through an iterative "Ask-Respond-Review" process involving three agent roles: a Candidate, multiple Reviewers, and a Chairman. The framework iteratively refines instructions by incorporating Reviewer feedback, enhancing dialogue diversity and difficulty. We construct a multi-turn dataset using the Alpaca dataset and fine-tune the LLaMA2-13B model. Evaluations on MT-Bench, MMLU-Pro, and Auto-Arena demonstrate significant improvements, achieving absolute gains of 2.9\% on MMLU-Pro and 2\% on MT-Bench compared to prior state-of-the-art models based on LLaMA2-13B. Ablation studies confirm the critical role of the Review stage and the use of multiple Reviewers in boosting instruction diversity and difficulty. Our work highlights the potential of review-driven, multi-agent frameworks for generating high-quality conversational data at scale.
Abstract:Machine learning as a data-driven solution has been widely applied in the field of fatigue lifetime prediction. In this paper, three models for wideband fatigue life prediction are built based on three machine learning models, i.e. support vector machine (SVM), Gaussian process regression (GPR) and artificial neural network (ANN). The generalization ability of the models is enhanced by employing numerous power spectra samples with different bandwidth parameters and a variety of material properties related to fatigue life. Sufficient Monte Carlo numerical simulations demonstrate that the newly developed machine learning models are superior to the traditional frequency-domain models in terms of life prediction accuracy and the ANN model has the best overall performance among the three developed machine learning models.
Abstract:Palm vein recognition is a novel biometric identification technology. But how to gain a better vein extraction result from the raw palm image is still a challenging problem, especially when the raw data collection has the problem of asymmetric illumination. This paper proposes a method based on single scale Retinex algorithm to extract palm vein image when strong shadow presents due to asymmetric illumination and uneven geometry of the palm. We test our method on a multispectral palm image. The experimental result shows that the proposed method is robust to the influence of illumination angle and shadow. Compared to the traditional extraction methods, the proposed method can obtain palm vein lines with better visualization performance (the contrast ratio increases by 18.4%, entropy increases by 1.07%, and definition increases by 18.8%).