Abstract:Kinodynamic Motion Planning (KMP) is to find a robot motion subject to concurrent kinematics and dynamics constraints. To date, quite a few methods solve KMP problems and those that exist struggle to find near-optimal solutions and exhibit high computational complexity as the planning space dimensionality increases. To address these challenges, we present a scalable, imitation learning-based, Model-Predictive Motion Planning Networks framework that quickly finds near-optimal path solutions with worst-case theoretical guarantees under kinodynamic constraints for practical underactuated systems. Our framework introduces two algorithms built on a neural generator, discriminator, and a parallelizable Model Predictive Controller (MPC). The generator outputs various informed states towards the given target, and the discriminator selects the best possible subset from them for the extension. The MPC locally connects the selected informed states while satisfying the given constraints leading to feasible, near-optimal solutions. We evaluate our algorithms on a range of cluttered, kinodynamically constrained, and underactuated planning problems with results indicating significant improvements in computation times, path qualities, and success rates over existing methods.
Abstract:Regrasping a suture needle is an important process in suturing, and previous study has shown that it takes on average 7.4s before the needle is thrown again. To bring efficiency into suturing, prior work either designs a task-specific mechanism or guides the gripper toward some specific pick-up point for proper grasping of a needle. Yet, these methods are usually not deployable when the working space is changed. These prior efforts highlight the need for more efficient regrasping and more generalizability of a proposed method. Therefore, in this work, we present rapid trajectory generation for bimanual needle regrasping via reinforcement learning (RL). Demonstrations from a sampling-based motion planning algorithm is incorporated to speed up the learning. In addition, we propose the ego-centric state and action spaces for this bimanual planning problem, where the reference frames are on the end-effectors instead of some fixed frame. Thus, the learned policy can be directly applied to any robot configuration and even to different robot arms. Our experiments in simulation show that the success rate of a single pass is 97%, and the planning time is 0.0212s on average, which outperforms other widely used motion planning algorithms. For the real-world experiments, the success rate is 73.3% if the needle pose is reconstructed from an RGB image, with a planning time of 0.0846s and a run time of 5.1454s. If the needle pose is known beforehand, the success rate becomes 90.5%, with a planning time of 0.0807s and a run time of 2.8801s.
Abstract:Autonomy in robotic surgery is very challenging in unstructured environments, especially when interacting with deformable soft tissues. This creates a challenge for model-based control methods that must account for deformation dynamics during tissue manipulation. Previous works in vision-based perception can capture the geometric changes within the scene, however, integration with dynamic properties toachieve accurate and safe model-based controllers has not been considered before. Considering the mechanic coupling between the robot and the environment, it is crucial to develop a registered, simulated dynamical model. In this work, we propose an online, continuous, real-to-sim registration method to bridge from 3D visual perception to position-based dynamics(PBD) modeling of tissues. The PBD method is employed to simulate soft tissue dynamics as well as rigid tool interactions for model-based control. Meanwhile, a vision-based strategy is used to generate 3D reconstructed point cloud surfaces that can be used to register and update the simulation, accounting for differences between the simulation and the real world. To verify this real-to-sim approach, tissue manipulation experiments have been conducted on the da Vinci Researach Kit. Our real-to-sim approach successfully reduced registration errors online, which is especially important for safety during autonomous control. Moreover, the result shows higher accuracy in occluded areas than fusion-based reconstruction.
Abstract:The control and task automation of robotic surgical system is very challenging, especially in soft tissue manipulation, due to the unpredictable deformations. Thus, an accurate simulator of soft tissues with the ability of interacting with robot manipulators is necessary. In this work, we propose a novel 2D simulation framework for tool-tissue interaction. This framework continuously tracks the motion of manipulator and simulates the tissue deformation in presence of collision detection. The deformation energy can be computed for the control and planning task.
Abstract:Constrained motion planning is a challenging field of research, aiming for computationally efficient methods that can find a collision-free path connecting a given start and goal by transversing zero-volume constraint manifolds for a given planning problem. These planning problems come up surprisingly frequently, such as in robot manipulation for performing daily life assistive tasks. However, few solutions to constrained motion planning are available, and those that exist struggle with high computational time complexity in finding a path solution on the manifolds. To address this challenge, we present Constrained Motion Planning Networks X (CoMPNetX). It is a neural planning approach, comprising a conditional deep neural generator and discriminator with neural gradients-based fast projections to the constraint manifolds. We also introduce neural task and scene representations conditioned on which the CoMPNetX generates implicit manifold configurations to turbo-charge any underlying classical planner such as Sampling-based Motion Planning methods for quickly solving complex constrained planning tasks. We show that our method, equipped with any constrained-adherence technique, finds path solutions with high success rates and lower computation times than state-of-the-art traditional path-finding tools on various challenging scenarios.
Abstract:Autonomous robotic surgery has seen significant progression over the last decade with the aims of reducing surgeon fatigue, improving procedural consistency, and perhaps one day take over surgery itself. However, automation has not been applied to the critical surgical task of controlling tissue and blood vessel bleeding--known as hemostasis. The task of hemostasis covers a spectrum of bleeding sources and a range of blood velocity, trajectory, and volume. In an extreme case, an un-controlled blood vessel fills the surgical field with flowing blood. In this work, we present the first, automated solution for hemostasis through development of a novel probabilistic blood flow detection algorithm and a trajectory generation technique that guides autonomous suction tools towards pooling blood. The blood flow detection algorithm is tested in both simulated scenes and in a real-life trauma scenario involving a hemorrhage that occurred during thyroidectomy. The complete solution is tested in a physical lab setting with the da Vinci Research Kit (dVRK) and a simulated surgical cavity for blood to flow through. The results show that our automated solution has accurate detection, a fast reaction time, and effective removal of the flowing blood. Therefore, the proposed methods are powerful tools to clearing the surgical field which can be followed by either a surgeon or future robotic automation developments to close the vessel rupture.
Abstract:Reliable real-time planning for robots is essential in today's rapidly expanding automated ecosystem. In such environments, traditional methods that plan by relaxing constraints become unreliable or slow-down for kinematically constrained robots. This paper describes the algorithm Dynamic Motion Planning Networks (Dynamic MPNet), an extension to Motion Planning Networks, for non-holonomic robots that address the challenge of real-time motion planning using a neural planning approach. We propose modifications to the training and planning networks that make it possible for real-time planning while improving the data efficiency of training and trained models' generalizability. We evaluate our model in simulation for planning tasks for a non-holonomic robot. We also demonstrate experimental results for an indoor navigation task using a Dubins car.
Abstract:The presence of task constraints imposes a significant challenge to motion planning. Despite all recent advancements, existing algorithms are still computationally expensive for most planning problems. In this paper, we present Constrained Motion Planning Networks (CoMPNet), the first neural planner for multimodal kinematic constraints. Our approach comprises the following components: i) constraint and environment perception encoders; ii) neural robot configuration generator that outputs configurations on/near the constraint manifold(s), and iii) a bidirectional planning algorithm that takes the generated configurations to create a feasible robot motion trajectory. We show that CoMPNet solves practical motion planning tasks involving both unconstrained and constrained problems. Furthermore, it generalizes to new unseen locations of the objects, i.e., not seen during training, in the given environments with high success rates. When compared to the state-of-the-art constrained motion planning algorithms, CoMPNet outperforms by order of magnitude improvement in computational speed with a significantly lower variance.
Abstract:Evaluating distance to collision for robot manipulators is useful for assessing the feasibility of a robot configuration or for defining safe robot motion in unpredictable environments. However, distance estimation is a timeconsuming operation, and the sensors involved in measuring the distance are always noisy. A challenge thus exists in evaluating the expected distance to collision for safer robot control and planning. In this work, we propose the use of Gaussian process (GP) regression and the forward kinematics (FK) kernel (a similarity function for robot manipulators) to efficiently and accurately estimate distance to collision. We show that the GP model with the FK kernel achieves 70 times faster distance evaluations compared to a standard geometric technique, and up to 13 times more accurate evaluations compared to other regression models, even when the GP is trained on noisy distance measurements. We employ this technique in trajectory optimization tasks and observe 9 times faster optimization than with the noise-free geometric approach yet obtain similar optimized motion plans. We also propose a confidence-based hybrid model that uses model-based predictions in regions of high confidence and switches to a more expensive sensor-based approach in other areas, and we demonstrate the usefulness of this hybrid model in an application involving reaching into a narrow passage.
Abstract:Robotic automation in surgery requires precise tracking of surgical tools and mapping of deformable tissue. Previous works on surgical perception frameworks require significant effort in developing features for surgical tool and tissue tracking. In this work, we overcome the challenge by exploiting deep learning methods for surgical perception. We integrated deep neural networks, capable of efficient feature extraction, into the tissue reconstruction and instrument pose estimation processes. By leveraging transfer learning, the deep learning based approach requires minimal training data and reduced feature engineering efforts to fully perceive a surgical scene. The framework was tested on three publicly available datasets, which use the da Vinci Surgical System, for comprehensive analysis. Experimental results show that our framework achieves state-of-the-art tracking performance in a surgical environment by utilizing deep learning for feature extraction.