Alert button
Picture for Maxime W. Lafarge

Maxime W. Lafarge

Alert button

Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge

Add code
Bookmark button
Alert button
Sep 27, 2023
Marc Aubreville, Nikolas Stathonikos, Taryn A. Donovan, Robert Klopfleisch, Jonathan Ganz, Jonas Ammeling, Frauke Wilm, Mitko Veta, Samir Jabari, Markus Eckstein, Jonas Annuscheit, Christian Krumnow, Engin Bozaba, Sercan Cayir, Hongyan Gu, Xiang 'Anthony' Chen, Mostafa Jahanifar, Adam Shephard, Satoshi Kondo, Satoshi Kasai, Sujatha Kotte, VG Saipradeep, Maxime W. Lafarge, Viktor H. Koelzer, Ziyue Wang, Yongbing Zhang, Sen Yang, Xiyue Wang, Katharina Breininger, Christof A. Bertram

Figure 1 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Figure 2 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Figure 3 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Figure 4 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Viaarxiv icon

CohortFinder: an open-source tool for data-driven partitioning of biomedical image cohorts to yield robust machine learning models

Add code
Bookmark button
Alert button
Jul 17, 2023
Fan Fan, Georgia Martinez, Thomas Desilvio, John Shin, Yijiang Chen, Bangchen Wang, Takaya Ozeki, Maxime W. Lafarge, Viktor H. Koelzer, Laura Barisoni, Anant Madabhushi, Satish E. Viswanath, Andrew Janowczyk

Figure 1 for CohortFinder: an open-source tool for data-driven partitioning of biomedical image cohorts to yield robust machine learning models
Figure 2 for CohortFinder: an open-source tool for data-driven partitioning of biomedical image cohorts to yield robust machine learning models
Viaarxiv icon

Multi-task learning for tissue segmentation and tumor detection in colorectal cancer histology slides

Add code
Bookmark button
Alert button
Apr 06, 2023
Lydia A. Schoenpflug, Maxime W. Lafarge, Anja L. Frei, Viktor H. Koelzer

Figure 1 for Multi-task learning for tissue segmentation and tumor detection in colorectal cancer histology slides
Figure 2 for Multi-task learning for tissue segmentation and tumor detection in colorectal cancer histology slides
Figure 3 for Multi-task learning for tissue segmentation and tumor detection in colorectal cancer histology slides
Figure 4 for Multi-task learning for tissue segmentation and tumor detection in colorectal cancer histology slides
Viaarxiv icon

Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a Fifth of the MIDOG 2022 Dataset

Add code
Bookmark button
Alert button
Jan 03, 2023
Maxime W. Lafarge, Viktor H. Koelzer

Figure 1 for Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a Fifth of the MIDOG 2022 Dataset
Figure 2 for Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a Fifth of the MIDOG 2022 Dataset
Figure 3 for Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a Fifth of the MIDOG 2022 Dataset
Figure 4 for Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a Fifth of the MIDOG 2022 Dataset
Viaarxiv icon

Mitosis domain generalization in histopathology images -- The MIDOG challenge

Add code
Bookmark button
Alert button
Apr 06, 2022
Marc Aubreville, Nikolas Stathonikos, Christof A. Bertram, Robert Klopleisch, Natalie ter Hoeve, Francesco Ciompi, Frauke Wilm, Christian Marzahl, Taryn A. Donovan, Andreas Maier, Jack Breen, Nishant Ravikumar, Youjin Chung, Jinah Park, Ramin Nateghi, Fattaneh Pourakpour, Rutger H. J. Fick, Saima Ben Hadj, Mostafa Jahanifar, Nasir Rajpoot, Jakob Dexl, Thomas Wittenberg, Satoshi Kondo, Maxime W. Lafarge, Viktor H. Koelzer, Jingtang Liang, Yubo Wang, Xi Long, Jingxin Liu, Salar Razavi, April Khademi, Sen Yang, Xiyue Wang, Mitko Veta, Katharina Breininger

Figure 1 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Figure 2 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Figure 3 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Figure 4 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Viaarxiv icon

Rotation Invariance and Extensive Data Augmentation: a strategy for the Mitosis Domain Generalization (MIDOG) Challenge

Add code
Bookmark button
Alert button
Sep 26, 2021
Maxime W. Lafarge, Viktor H. Koelzer

Figure 1 for Rotation Invariance and Extensive Data Augmentation: a strategy for the Mitosis Domain Generalization (MIDOG) Challenge
Figure 2 for Rotation Invariance and Extensive Data Augmentation: a strategy for the Mitosis Domain Generalization (MIDOG) Challenge
Figure 3 for Rotation Invariance and Extensive Data Augmentation: a strategy for the Mitosis Domain Generalization (MIDOG) Challenge
Figure 4 for Rotation Invariance and Extensive Data Augmentation: a strategy for the Mitosis Domain Generalization (MIDOG) Challenge
Viaarxiv icon

Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology

Add code
Bookmark button
Alert button
Aug 26, 2020
Maxime W. Lafarge, Josien P. W. Pluim, Mitko Veta

Figure 1 for Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
Figure 2 for Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
Figure 3 for Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
Figure 4 for Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
Viaarxiv icon

Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis

Add code
Bookmark button
Alert button
Feb 20, 2020
Maxime W. Lafarge, Erik J. Bekkers, Josien P. W. Pluim, Remco Duits, Mitko Veta

Figure 1 for Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Figure 2 for Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Figure 3 for Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Figure 4 for Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Viaarxiv icon

Inferring a Third Spatial Dimension from 2D Histological Images

Add code
Bookmark button
Alert button
Jan 10, 2018
Maxime W. Lafarge, Josien P. W. Pluim, Koen A. J. Eppenhof, Pim Moeskops, Mitko Veta

Figure 1 for Inferring a Third Spatial Dimension from 2D Histological Images
Figure 2 for Inferring a Third Spatial Dimension from 2D Histological Images
Figure 3 for Inferring a Third Spatial Dimension from 2D Histological Images
Figure 4 for Inferring a Third Spatial Dimension from 2D Histological Images
Viaarxiv icon