



Abstract:The adoption of Autonomous Mobile Robots (AMRs) for internal logistics is accelerating, with most solutions emphasizing decentralized, onboard intelligence. While AMRs in indoor environments like factories can be supported by infrastructure, involving external sensors and computational resources, such systems remain underexplored in the literature. This paper presents a comprehensive overview of infrastructure-based AMR systems, outlining key opportunities and challenges. To support this, we introduce a reference architecture combining infrastructure-based sensing, on-premise cloud computing, and onboard autonomy. Based on the architecture, we review core technologies for localization, perception, and planning. We demonstrate the approach in a real-world deployment in a heavy-vehicle manufacturing environment and summarize findings from a user experience (UX) evaluation. Our aim is to provide a holistic foundation for future development of scalable, robust, and human-compatible AMR systems in complex industrial environments.
Abstract:Wirelessly connected devices can collaborately train a machine learning model using federated learning, where the aggregation of model updates occurs using over-the-air computation. Carrier frequency offset caused by imprecise clocks in devices will cause the phase of the over-the-air channel to drift randomly, such that late symbols in a coherence block are transmitted with lower quality than early symbols. To mitigate the effect of degrading symbol quality, we propose a scheme where one of the permutations Roll, Flip and Sort are applied on gradients before transmission. Through simulations we show that the permutations can both improve and degrade learning performance. Furthermore, we derive the expectation and variance of the gradient estimate, which is shown to grow exponentially with the number of symbols in a coherence block.
Abstract:In this work, we focus on the communication aspect of decentralized learning, which involves multiple agents training a shared machine learning model using decentralized stochastic gradient descent (D-SGD) over distributed data. In particular, we investigate the impact of broadcast transmission and probabilistic random access policy on the convergence performance of D-SGD, considering the broadcast nature of wireless channels and the link dynamics in the communication topology. Our results demonstrate that optimizing the access probability to maximize the expected number of successful links is a highly effective strategy for accelerating the system convergence.




Abstract:Collaborative robots are becoming part of intelligent automation systems in modern industry. Development and control of such systems differs from traditional automation methods and consequently leads to new challenges. Thankfully, Robot Operating System (ROS) provides a communication platform and a vast variety of tools and utilities that can aid that development. However, it is hard to use ROS in large-scale automation systems due to communication issues in a distributed setup, hence the development of ROS2. In this paper, a ROS2 based communication architecture is presented together with an industrial use-case of a collaborative and intelligent automation system.




Abstract:Systems based on the Robot Operating System (ROS) are easy to extend with new on-line algorithms and devices. However, there is relatively little support for coordinating a large number of heterogeneous sub-systems. In this paper we propose an architecture to model and control collaborative and intelligent automation systems in a hierarchical fashion.