Alert button
Picture for Mark Neubauer

Mark Neubauer

Alert button

University of Illinois at Urbana-Champaign

Physics Community Needs, Tools, and Resources for Machine Learning

Mar 30, 2022
Philip Harris, Erik Katsavounidis, William Patrick McCormack, Dylan Rankin, Yongbin Feng, Abhijith Gandrakota, Christian Herwig, Burt Holzman, Kevin Pedro, Nhan Tran, Tingjun Yang, Jennifer Ngadiuba, Michael Coughlin, Scott Hauck, Shih-Chieh Hsu, Elham E Khoda, Deming Chen, Mark Neubauer, Javier Duarte, Georgia Karagiorgi, Mia Liu

Figure 1 for Physics Community Needs, Tools, and Resources for Machine Learning
Figure 2 for Physics Community Needs, Tools, and Resources for Machine Learning
Figure 3 for Physics Community Needs, Tools, and Resources for Machine Learning
Figure 4 for Physics Community Needs, Tools, and Resources for Machine Learning
Viaarxiv icon

Graph Neural Networks for Charged Particle Tracking on FPGAs

Dec 03, 2021
Abdelrahman Elabd, Vesal Razavimaleki, Shi-Yu Huang, Javier Duarte, Markus Atkinson, Gage DeZoort, Peter Elmer, Jin-Xuan Hu, Shih-Chieh Hsu, Bo-Cheng Lai, Mark Neubauer, Isobel Ojalvo, Savannah Thais

Figure 1 for Graph Neural Networks for Charged Particle Tracking on FPGAs
Figure 2 for Graph Neural Networks for Charged Particle Tracking on FPGAs
Figure 3 for Graph Neural Networks for Charged Particle Tracking on FPGAs
Figure 4 for Graph Neural Networks for Charged Particle Tracking on FPGAs
Viaarxiv icon

Charged particle tracking via edge-classifying interaction networks

Mar 30, 2021
Gage DeZoort, Savannah Thais, Isobel Ojalvo, Peter Elmer, Vesal Razavimaleki, Javier Duarte, Markus Atkinson, Mark Neubauer

Figure 1 for Charged particle tracking via edge-classifying interaction networks
Figure 2 for Charged particle tracking via edge-classifying interaction networks
Figure 3 for Charged particle tracking via edge-classifying interaction networks
Figure 4 for Charged particle tracking via edge-classifying interaction networks
Viaarxiv icon

Physics and Computing Performance of the Exa.TrkX TrackML Pipeline

Mar 11, 2021
Xiangyang Ju, Daniel Murnane, Paolo Calafiura, Nicholas Choma, Sean Conlon, Steve Farrell, Yaoyuan Xu, Maria Spiropulu, Jean-Roch Vlimant, Adam Aurisano, Jeremy Hewes, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Markus Atkinson, Mark Neubauer, Gage DeZoort, Savannah Thais, Aditi Chauhan, Alex Schuy, Shih-Chieh Hsu, Alex Ballow, and Alina Lazar

Figure 1 for Physics and Computing Performance of the Exa.TrkX TrackML Pipeline
Figure 2 for Physics and Computing Performance of the Exa.TrkX TrackML Pipeline
Figure 3 for Physics and Computing Performance of the Exa.TrkX TrackML Pipeline
Figure 4 for Physics and Computing Performance of the Exa.TrkX TrackML Pipeline
Viaarxiv icon

Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs

Nov 30, 2020
Aneesh Heintz, Vesal Razavimaleki, Javier Duarte, Gage DeZoort, Isobel Ojalvo, Savannah Thais, Markus Atkinson, Mark Neubauer, Lindsey Gray, Sergo Jindariani, Nhan Tran, Philip Harris, Dylan Rankin, Thea Aarrestad, Vladimir Loncar, Maurizio Pierini, Sioni Summers, Jennifer Ngadiuba, Mia Liu, Edward Kreinar, Zhenbin Wu

Figure 1 for Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
Figure 2 for Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
Figure 3 for Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
Figure 4 for Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
Viaarxiv icon

Enabling real-time multi-messenger astrophysics discoveries with deep learning

Nov 26, 2019
E. A. Huerta, Gabrielle Allen, Igor Andreoni, Javier M. Antelis, Etienne Bachelet, Bruce Berriman, Federica Bianco, Rahul Biswas, Matias Carrasco, Kyle Chard, Minsik Cho, Philip S. Cowperthwaite, Zachariah B. Etienne, Maya Fishbach, Francisco Förster, Daniel George, Tom Gibbs, Matthew Graham, William Gropp, Robert Gruendl, Anushri Gupta, Roland Haas, Sarah Habib, Elise Jennings, Margaret W. G. Johnson, Erik Katsavounidis, Daniel S. Katz, Asad Khan, Volodymyr Kindratenko, William T. C. Kramer, Xin Liu, Ashish Mahabal, Zsuzsa Marka, Kenton McHenry, Jonah Miller, Claudia Moreno, Mark Neubauer, Steve Oberlin, Alexander R. Olivas, Donald Petravick, Adam Rebei, Shawn Rosofsky, Milton Ruiz, Aaron Saxton, Bernard F. Schutz, Alex Schwing, Ed Seidel, Stuart L. Shapiro, Hongyu Shen, Yue Shen, Leo Singer, Brigitta M. Sipőcz, Lunan Sun, John Towns, Antonios Tsokaros, Wei Wei, Jack Wells, Timothy J. Williams, Jinjun Xiong, Zhizhen Zhao

Figure 1 for Enabling real-time multi-messenger astrophysics discoveries with deep learning
Figure 2 for Enabling real-time multi-messenger astrophysics discoveries with deep learning
Viaarxiv icon

Machine Learning in High Energy Physics Community White Paper

Jul 08, 2018
Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

Figure 1 for Machine Learning in High Energy Physics Community White Paper
Figure 2 for Machine Learning in High Energy Physics Community White Paper
Figure 3 for Machine Learning in High Energy Physics Community White Paper
Viaarxiv icon