



Abstract:LLMs now tackle a wide range of software-related tasks, yet we show that their performance varies markedly both across and within these tasks. Routing user queries to the appropriate LLMs can therefore help improve response quality while reducing cost. Prior work, however, has focused mainly on general-purpose LLM routing via black-box models. We introduce Routesplain, the first LLM router for software-related tasks, including multilingual code generation and repair, input/output prediction, and computer science QA. Unlike existing routing approaches, Routesplain first extracts human-interpretable concepts from each query (e.g., task, domain, reasoning complexity) and only routes based on these concepts, thereby providing intelligible, faithful rationales. We evaluate Routesplain on 16 state-of-the-art LLMs across eight software-related tasks; Routesplain outperforms individual models both in terms of accuracy and cost, and equals or surpasses all black-box baselines, with concept-level intervention highlighting avenues for further router improvements.




Abstract:Question answering over visually rich documents (VRDs) requires reasoning not only over isolated content but also over documents' structural organization and cross-page dependencies. However, conventional retrieval-augmented generation (RAG) methods encode content in isolated chunks during ingestion, losing structural and cross-page dependencies, and retrieve a fixed number of pages at inference, regardless of the specific demands of the question or context. This often results in incomplete evidence retrieval and degraded answer quality for multi-page reasoning tasks. To address these limitations, we propose LAD-RAG, a novel Layout-Aware Dynamic RAG framework. During ingestion, LAD-RAG constructs a symbolic document graph that captures layout structure and cross-page dependencies, adding it alongside standard neural embeddings to yield a more holistic representation of the document. During inference, an LLM agent dynamically interacts with the neural and symbolic indices to adaptively retrieve the necessary evidence based on the query. Experiments on MMLongBench-Doc, LongDocURL, DUDE, and MP-DocVQA demonstrate that LAD-RAG improves retrieval, achieving over 90% perfect recall on average without any top-k tuning, and outperforming baseline retrievers by up to 20% in recall at comparable noise levels, yielding higher QA accuracy with minimal latency.