Abstract:The Video Assistant Referee (VAR) has revolutionized association football, enabling referees to review incidents on the pitch, make informed decisions, and ensure fairness. However, due to the lack of referees in many countries and the high cost of the VAR infrastructure, only professional leagues can benefit from it. In this paper, we propose a Video Assistant Referee System (VARS) that can automate soccer decision-making. VARS leverages the latest findings in multi-view video analysis, to provide real-time feedback to the referee, and help them make informed decisions that can impact the outcome of a game. To validate VARS, we introduce SoccerNet-MVFoul, a novel video dataset of soccer fouls from multiple camera views, annotated with extensive foul descriptions by a professional soccer referee, and we benchmark our VARS to automatically recognize the characteristics of these fouls. We believe that VARS has the potential to revolutionize soccer refereeing and take the game to new heights of fairness and accuracy across all levels of professional and amateur federations.
Abstract:Association football is a complex and dynamic sport, with numerous actions occurring simultaneously in each game. Analyzing football videos is challenging and requires identifying subtle and diverse spatio-temporal patterns. Despite recent advances in computer vision, current algorithms still face significant challenges when learning from limited annotated data, lowering their performance in detecting these patterns. In this paper, we propose an active learning framework that selects the most informative video samples to be annotated next, thus drastically reducing the annotation effort and accelerating the training of action spotting models to reach the highest accuracy at a faster pace. Our approach leverages the notion of uncertainty sampling to select the most challenging video clips to train on next, hastening the learning process of the algorithm. We demonstrate that our proposed active learning framework effectively reduces the required training data for accurate action spotting in football videos. We achieve similar performances for action spotting with NetVLAD++ on SoccerNet-v2, using only one-third of the dataset, indicating significant capabilities for reducing annotation time and improving data efficiency. We further validate our approach on two new datasets that focus on temporally localizing actions of headers and passes, proving its effectiveness across different action semantics in football. We believe our active learning framework for action spotting would support further applications of action spotting algorithms and accelerate annotation campaigns in the sports domain.
Abstract:In recent years, online distillation has emerged as a powerful technique for adapting real-time deep neural networks on the fly using a slow, but accurate teacher model. However, a major challenge in online distillation is catastrophic forgetting when the domain shifts, which occurs when the student model is updated with data from the new domain and forgets previously learned knowledge. In this paper, we propose a solution to this issue by leveraging the power of continual learning methods to reduce the impact of domain shifts. Specifically, we integrate several state-of-the-art continual learning methods in the context of online distillation and demonstrate their effectiveness in reducing catastrophic forgetting. Furthermore, we provide a detailed analysis of our proposed solution in the case of cyclic domain shifts. Our experimental results demonstrate the efficacy of our approach in improving the robustness and accuracy of online distillation, with potential applications in domains such as video surveillance or autonomous driving. Overall, our work represents an important step forward in the field of online distillation and continual learning, with the potential to significantly impact real-world applications.
Abstract:Supervised machine learning was recently introduced in high-contrast imaging (HCI) through the SODINN algorithm, a convolutional neural network designed for exoplanet detection in angular differential imaging (ADI) data sets. The benchmarking of HCI algorithms within the Exoplanet Imaging Data Challenge (EIDC) showed that (i) SODINN can produce a high number of false positives in the final detection maps, and (ii) algorithms processing images in a more local manner perform better. This work aims to improve the SODINN detection performance by introducing new local processing approaches and adapting its learning process accordingly. We propose NA-SODINN, a new deep learning architecture that better captures image noise correlations by training an independent SODINN model per noise regime over the processed frame. The identification of these noise regimes is based on a novel technique, named PCA-pmaps, which allows to estimate the distance from the star in the image from which background noise starts to dominate over residual speckle noise. NA-SODINN is also fed with local discriminators, such as S/N curves, which complement spatio-temporal feature maps when training the model.Our new approach is tested against its predecessor, as well as two SODINN-based hybrid models and a more standard annular-PCA approach, through local ROC analysis of ADI sequences from VLT/SPHERE and Keck/NIRC-2 instruments. Results show that NA-SODINN enhances SODINN in both the sensitivity and specificity, especially in the speckle-dominated noise regime. NA-SODINN is also benchmarked against the complete set of submitted detection algorithms in EIDC, in which we show that its final detection score matches or outperforms the most powerful detection algorithms, reaching a performance similar to that of the Regime Switching Model algorithm.
Abstract:Deep learning has emerged as an effective solution for solving the task of object detection in images but at the cost of requiring large labeled datasets. To mitigate this cost, semi-supervised object detection methods, which consist in leveraging abundant unlabeled data, have been proposed and have already shown impressive results. However, most of these methods require linking a pseudo-label to a ground-truth object by thresholding. In previous works, this threshold value is usually determined empirically, which is time consuming, and only done for a single data distribution. When the domain, and thus the data distribution, changes, a new and costly parameter search is necessary. In this work, we introduce our method Adaptive Self-Training for Object Detection (ASTOD), which is a simple yet effective teacher-student method. ASTOD determines without cost a threshold value based directly on the ground value of the score histogram. To improve the quality of the teacher predictions, we also propose a novel pseudo-labeling procedure. We use different views of the unlabeled images during the pseudo-labeling step to reduce the number of missed predictions and thus obtain better candidate labels. Our teacher and our student are trained separately, and our method can be used in an iterative fashion by replacing the teacher by the student. On the MS-COCO dataset, our method consistently performs favorably against state-of-the-art methods that do not require a threshold parameter, and shows competitive results with methods that require a parameter sweep search. Additional experiments with respect to a supervised baseline on the DIOR dataset containing satellite images lead to similar conclusions, and prove that it is possible to adapt the score threshold automatically in self-training, regardless of the data distribution.
Abstract:Various tasks encountered in real-world surveillance can be addressed by determining posteriors (e.g. by Bayesian inference or machine learning), based on which critical decisions must be taken. However, the surveillance domain (acquisition device, operating conditions, etc.) is often unknown, which prevents any possibility of scene-specific optimization. In this paper, we define a probabilistic framework and present a formal proof of an algorithm for the unsupervised many-to-infinity domain adaptation of posteriors. Our proposed algorithm is applicable when the probability measure associated with the target domain is a convex combination of the probability measures of the source domains. It makes use of source models and a domain discriminator model trained off-line to compute posteriors adapted on the fly to the target domain. Finally, we show the effectiveness of our algorithm for the task of semantic segmentation in real-world surveillance. The code is publicly available at https://github.com/rvandeghen/MDA.
Abstract:The SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team. In 2022, the challenges were composed of 6 vision-based tasks: (1) action spotting, focusing on retrieving action timestamps in long untrimmed videos, (2) replay grounding, focusing on retrieving the live moment of an action shown in a replay, (3) pitch localization, focusing on detecting line and goal part elements, (4) camera calibration, dedicated to retrieving the intrinsic and extrinsic camera parameters, (5) player re-identification, focusing on retrieving the same players across multiple views, and (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams. Compared to last year's challenges, tasks (1-2) had their evaluation metrics redefined to consider tighter temporal accuracies, and tasks (3-6) were novel, including their underlying data and annotations. More information on the tasks, challenges and leaderboards are available on https://www.soccer-net.org. Baselines and development kits are available on https://github.com/SoccerNet.
Abstract:Tracking objects in soccer videos is extremely important to gather both player and team statistics, whether it is to estimate the total distance run, the ball possession or the team formation. Video processing can help automating the extraction of those information, without the need of any invasive sensor, hence applicable to any team on any stadium. Yet, the availability of datasets to train learnable models and benchmarks to evaluate methods on a common testbed is very limited. In this work, we propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each, representative of challenging soccer scenarios, and a complete 45-minutes half-time for long-term tracking. The dataset is fully annotated with bounding boxes and tracklet IDs, enabling the training of MOT baselines in the soccer domain and a full benchmarking of those methods on our segregated challenge sets. Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved, with several improvement required in case of fast motion or in scenarios of severe occlusion.
Abstract:Accurate player and ball detection has become increasingly important in recent years for sport analytics. As most state-of-the-art methods rely on training deep learning networks in a supervised fashion, they require huge amounts of annotated data, which are rarely available. In this paper, we present a novel generic semi-supervised method to train a network based on a labeled image dataset by leveraging a large unlabeled dataset of soccer broadcast videos. More precisely, we design a teacher-student approach in which the teacher produces surrogate annotations on the unlabeled data to be used later for training a student which has the same architecture as the teacher. Furthermore, we introduce three training loss parametrizations that allow the student to doubt the predictions of the teacher during training depending on the proposal confidence score. We show that including unlabeled data in the training process allows to substantially improve the performances of the detection network trained only on the labeled data. Finally, we provide a thorough performance study including different proportions of labeled and unlabeled data, and establish the first benchmark on the new SoccerNet-v3 detection task, with an mAP of 52.3%. Our code is available at https://github.com/rvandeghen/SST .
Abstract:Background subtraction (BGS) is a common choice for performing motion detection in video. Hundreds of BGS algorithms are released every year, but combining them to detect motion remains largely unexplored. We found that combination strategies allow to capitalize on this massive amount of available BGS algorithms, and offer significant space for performance improvement. In this paper, we explore sets of performances achievable by 6 strategies combining, pixelwise, the outputs of 26 unsupervised BGS algorithms, on the CDnet 2014 dataset, both in the ROC space and in terms of the F1 score. The chosen strategies are representative for a large panel of strategies, including both deterministic and non-deterministic ones, voting and learning. In our experiments, we compare our results with the state-of-the-art combinations IUTIS-5 and CNN-SFC, and report six conclusions, among which the existence of an important gap between the performances of the individual algorithms and the best performances achievable by combining them.