Alert button
Picture for Lucy Yip

Lucy Yip

Alert button

Rapid Development of Compositional AI

Feb 12, 2023
Lee Martie, Jessie Rosenberg, Veronique Demers, Gaoyuan Zhang, Onkar Bhardwaj, John Henning, Aditya Prasad, Matt Stallone, Ja Young Lee, Lucy Yip, Damilola Adesina, Elahe Paikari, Oscar Resendiz, Sarah Shaw, David Cox

Figure 1 for Rapid Development of Compositional AI
Figure 2 for Rapid Development of Compositional AI
Figure 3 for Rapid Development of Compositional AI
Figure 4 for Rapid Development of Compositional AI

Compositional AI systems, which combine multiple artificial intelligence components together with other application components to solve a larger problem, have no known pattern of development and are often approached in a bespoke and ad hoc style. This makes development slower and harder to reuse for future applications. To support the full rapid development cycle of compositional AI applications, we have developed a novel framework called (Bee)* (written as a regular expression and pronounced as "beestar"). We illustrate how (Bee)* supports building integrated, scalable, and interactive compositional AI applications with a simplified developer experience.

* 2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER), Melbourne, Australia, 2023, pp. (forthcoming)  
* Accepted to ICSE 2023, NIER track 
Viaarxiv icon

Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours

Aug 02, 2022
Eyal Shnarch, Alon Halfon, Ariel Gera, Marina Danilevsky, Yannis Katsis, Leshem Choshen, Martin Santillan Cooper, Dina Epelboim, Zheng Zhang, Dakuo Wang, Lucy Yip, Liat Ein-Dor, Lena Dankin, Ilya Shnayderman, Ranit Aharonov, Yunyao Li, Naftali Liberman, Philip Levin Slesarev, Gwilym Newton, Shila Ofek-Koifman, Noam Slonim, Yoav Katz

Figure 1 for Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours
Figure 2 for Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours
Figure 3 for Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours
Figure 4 for Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours

Text classification can be useful in many real-world scenarios, saving a lot of time for end users. However, building a custom classifier typically requires coding skills and ML knowledge, which poses a significant barrier for many potential users. To lift this barrier, we introduce Label Sleuth, a free open source system for labeling and creating text classifiers. This system is unique for (a) being a no-code system, making NLP accessible to non-experts, (b) guiding users through the entire labeling process until they obtain a custom classifier, making the process efficient -- from cold start to classifier in a few hours, and (c) being open for configuration and extension by developers. By open sourcing Label Sleuth we hope to build a community of users and developers that will broaden the utilization of NLP models.

* 7 pages, 2 figures 
Viaarxiv icon