INSA Rennes, IETR
Abstract:The increasing deployment of large antenna arrays at base stations has significantly improved the spatial resolution and localization accuracy of radio-localization methods. However, traditional signal processing techniques struggle in complex radio environments, particularly in scenarios dominated by non line of sight (NLoS) propagation paths, resulting in degraded localization accuracy. Recent developments in machine learning have facilitated the development of machine learning-assisted localization techniques, enhancing localization accuracy in complex radio environments. However, these methods often involve substantial computational complexity during both the training and inference phases. This work extends the well-established fingerprinting-based localization framework by simultaneously reducing its memory requirements and improving its accuracy. Specifically, a model-based neural network is used to learn the location-to-channel mapping, and then serves as a generative neural channel model. This generative model augments the fingerprinting comparison dictionary while reducing the memory requirements. The proposed method outperforms fingerprinting baselines by achieving sub-wavelength localization accuracy, even in NLoS environments. Remarkably, it offers an improvement by several orders of magnitude in localization accuracy, while simultaneously reducing memory requirements by an order of magnitude compared to classical fingerprinting methods.
Abstract:Hybrid precoding is a key ingredient of cost-effective massive multiple-input multiple-output transceivers. However, setting jointly digital and analog precoders to optimally serve multiple users is a difficult optimization problem. Moreover, it relies heavily on precise knowledge of the channels, which is difficult to obtain, especially when considering realistic systems comprising hardware impairments. In this paper, a joint channel estimation and hybrid precoding method is proposed, which consists in an end-to-end architecture taking received pilots as inputs and outputting precoders. The resulting neural network is fully model-based, making it lightweight and interpretable with very few learnable parameters. The channel estimation step is performed using the unfolded matching pursuit algorithm, accounting for imperfect knowledge of the antenna system, while the precoding step is done via unfolded projected gradient ascent. The great potential of the proposed method is empirically demonstrated on realistic synthetic channels.
Abstract:The increasing demands for high-throughput and energy-efficient wireless communications are driving the adoption of extremely large antennas operating at high-frequency bands. In these regimes, multiple users will reside in the radiative near-field, and accurate localization becomes essential. Unlike conventional far-field systems that rely solely on DOA estimation, near-field localization exploits spherical wavefront propagation to recover both DOA and range information. While subspace-based methods, such as MUSIC and its extensions, offer high resolution and interpretability for near-field localization, their performance is significantly impacted by model assumptions, including non-coherent sources, well-calibrated arrays, and a sufficient number of snapshots. To address these limitations, this work proposes AI-aided subspace methods for near-field localization that enhance robustness to real-world challenges. Specifically, we introduce NF-SubspaceNet, a deep learning-augmented 2D MUSIC algorithm that learns a surrogate covariance matrix to improve localization under challenging conditions, and DCD-MUSIC, a cascaded AI-aided approach that decouples angle and range estimation to reduce computational complexity. We further develop a novel model-order-aware training method to accurately estimate the number of sources, that is combined with casting of near field subspace methods as AI models for learning. Extensive simulations demonstrate that the proposed methods outperform classical and existing deep-learning-based localization techniques, providing robust near-field localization even under coherent sources, miscalibrations, and few snapshots.
Abstract:Dynamic metasurface antennas (DMAs) are a promising embodiment of next-generation reconfigurable antenna technology to realize base stations and access points with reduced cost and power consumption. A DMA is a thin structure patterned on its front with reconfigurable radiating metamaterial elements (meta-atoms) that are excited by waveguides or cavities. Mutual coupling between the meta-atoms can result in a strongly non-linear dependence of the DMA's radiation pattern on the configuration of its meta-atoms. However, besides the obvious algorithmic challenges of working with physics-compliant DMA models, it remains unclear how mutual coupling in DMAs influences the ability to achieve a desired wireless functionality. In this paper, we provide theoretical, numerical and experimental evidence that strong mutual coupling in DMAs increases the radiation pattern sensitivity to the DMA configuration and thereby boosts the available control over the radiation pattern, improving the ability to tailor the radiation pattern to the requirements of a desired wireless functionality. Counterintuitively, we hence encourage next-generation DMA implementations to enhance (rather than suppress) mutual coupling, in combination with suitable physics-compliant modeling and optimization. We expect the unveiled mechanism by which mutual coupling boosts the radiation pattern control to also apply to other reconfigurable antenna systems based on tunable lumped elements.
Abstract:This paper introduces an innovative end-to-end model-based deep learning approach for efficient electromagnetic analysis of high-dimensional frequency selective surfaces (FSS). Unlike traditional data-driven methods that require large datasets, this approach combines physical insights from equivalent circuit models with deep learning techniques to significantly reduce model complexity and enhance prediction accuracy. Compared to previously introduced model-based learning approaches, the proposed method is trained end-to-end from the physical structure of the FSS (geometric parameters) to its electromagnetic response (S-parameters). Additionally, an improvement in phase prediction accuracy through a modified loss function is presented. Comparisons with direct models, including deep neural networks (DNN) and radial basis function networks (RBFN), demonstrate the superiority of the model-based approach in terms of computational efficiency, model size, and generalization capability.
Abstract:Gain-phase impairments (GPIs) affect both communication and sensing in 6G integrated sensing and communication (ISAC). We study the effect of GPIs in a single-input, multiple-output orthogonal frequency-division multiplexing ISAC system and develop a model-based unsupervised learning approach to simultaneously (i) estimate the gain-phase errors and (ii) localize sensing targets. The proposed method is based on the optimal maximum a-posteriori ratio test for a single target. Results show that the proposed approach can effectively estimate the gain-phase errors and yield similar position estimation performance as the case when the impairments are fully known.
Abstract:The scattering of waves in a complex medium is perturbed by polarizability changes or motion of embedded targets. These perturbations could serve as perfectly non-invasive guidestars for focusing on the targets. In this Letter, we theoretically derive a fundamental difference between these two perturbation types (the change of the scattering matrix is of rank one [two] for target polarizability changes [motion]) and identify accordingly optimal strategies to perfectly focus on the target in both cases. For target motion, at least two displacements are necessary. Furthermore, for the case of dynamic complex media additionally featuring parasitic perturbers, we establish a non-invasive scheme to achieve optimal time-averaged power delivery to a perturbation-inducing target. In all cases, no assumptions about the unitarity of the system's scattering matrix or the size of the perturbation are necessary. We experimentally demonstrate all results in the microwave regime using a strongly sub-unitary lossy chaotic cavity as complex medium. Our experiments highlight that the target's "structural scattering" is irrelevant [must be negligible] in the case of target polarizability changes [motion]. We expect our results to find applications in communications, cybersecurity, bioelectronics, flow-cytometry and self-propelled nano-swimmers.
Abstract:Channel charting builds a map of the radio environment in an unsupervised way. The obtained chart locations can be seen as low-dimensional compressed versions of channel state information that can be used for a wide variety of applications, including beam prediction. In non-standalone or cell-free systems, chart locations computed at a given base station can be transmitted to several other base stations (possibly operating at different frequency bands) for them to predict which beams to use. This potentially yields a dramatic reduction of the overhead due to channel estimation or beam management, since only the base station performing charting requires channel state information, the others directly predicting the beam from the chart location. In this paper, advanced model-based neural network architectures are proposed for both channel charting and beam prediction. The proposed methods are assessed on realistic synthetic channels, yielding promising results.
Abstract:Integrated sensing and communications (ISAC) is envisioned as one of the key enablers of next-generation wireless systems, offering improved hardware, spectral, and energy efficiencies. In this paper, we consider an ISAC transceiver with an impaired uniform linear array that performs single-target detection and position estimation, and multiple-input single-output communications. A differentiable model-based learning approach is considered, which optimizes both the transmitter and the sensing receiver in an end-to-end manner. An unsupervised loss function that enables impairment compensation without the need for labeled data is proposed. Semi-supervised learning strategies are also proposed, which use a combination of small amounts of labeled data and unlabeled data. Our results show that semi-supervised learning can achieve similar performance to supervised learning with 98.8% less required labeled data.
Abstract:Channel charting (CC) consists in learning a mapping between the space of raw channel observations, made available from pilot-based channel estimation in multicarrier multiantenna system, and a low-dimensional space where close points correspond to channels of user equipments (UEs) close spatially. Among the different methods of learning this mapping, some rely on a distance measure between channel vectors. Such a distance should reliably reflect the local spatial neighborhoods of the UEs. The recently proposed phase-insensitive (PI) distance exhibits good properties in this regards, but suffers from ambiguities due to both its periodic and oscillatory aspects, making users far away from each other appear closer in some cases. In this paper, a thorough theoretical analysis of the said distance and its limitations is provided, giving insights on how they can be mitigated. Guidelines for designing systems capable of learning quality charts are consequently derived. Experimental validation is then conducted on synthetic and realistic data in different scenarios.