Abstract:We propose physics-informed digital twin (PIDT): a fiber parameter estimation approach that combines a parameterized split-step method with a physics-informed loss. PIDT improves accuracy and convergence speed with lower complexity compared to previous neural operators.




Abstract:The growing integration of distributed integrated sensing and communication (ISAC) with closed-loop control in intelligent networks demands efficient information transmission under stringent bandwidth constraints. To address this challenge, this paper proposes a unified framework for goal-oriented semantic communication in distributed SCC systems. Building upon Weaver's three-level model, we establish a hierarchical semantic formulation with three error levels (L1: observation reconstruction, L2: state estimation, and L3: control) to jointly optimize their corresponding objectives. Based on this formulation, we propose a unified goal-oriented semantic compression and rate adaptation framework that is applicable to different semantic error levels and optimization goals across the SCC loop. A rate-limited multi-sensor LQR system is used as a case study to validate the proposed framework. We employ a GRU-based AE for semantic compression and a PPO-based rate adaptation algorithm that dynamically allocates transmission rates across sensors. Results show that the proposed framework effectively captures task-relevant semantics and adapts its resource allocation strategies across different semantic levels, thereby achieving level-specific performance gains under bandwidth constraints.
Abstract:Channel charting (CC) is a self-supervised positioning technique whose main limitation is that the estimated positions lie in an arbitrary coordinate system that is not aligned with true spatial coordinates. In this work, we propose a novel method to produce CC locations in true spatial coordinates with the aid of a digital twin (DT). Our main contribution is a new framework that (i) extracts large-scale channel-state information (CSI) features from estimated CSI and the DT and (ii) matches these features with a cosine-similarity loss function. The DT-aided loss function is then combined with a conventional CC loss to learn a positioning function that provides true spatial coordinates without relying on labeled data. Our results for a simulated indoor scenario demonstrate that the proposed framework reduces the relative mean distance error by 29% compared to the state of the art. We also show that the proposed approach is robust to DT modeling mismatches and a distribution shift in the testing data.
Abstract:Accurate and robust localization is a critical enabler for emerging 5G and 6G applications, including autonomous driving, extended reality (XR), and smart manufacturing. While data-driven approaches have shown promise, most existing models require large amounts of labeled data and struggle to generalize across deployment scenarios and wireless configurations. To address these limitations, we propose a foundation-model-based solution tailored for wireless localization. We first analyze how different self-supervised learning (SSL) tasks acquire general-purpose and task-specific semantic features based on information bottleneck (IB) theory. Building on this foundation, we design a pretraining methodology for the proposed Large Wireless Localization Model (LWLM). Specifically, we propose an SSL framework that jointly optimizes three complementary objectives: (i) spatial-frequency masked channel modeling (SF-MCM), (ii) domain-transformation invariance (DTI), and (iii) position-invariant contrastive learning (PICL). These objectives jointly capture the underlying semantics of wireless channel from multiple perspectives. We further design lightweight decoders for key downstream tasks, including time-of-arrival (ToA) estimation, angle-of-arrival (AoA) estimation, single base station (BS) localization, and multiple BS localization. Comprehensive experimental results confirm that LWLM consistently surpasses both model-based and supervised learning baselines across all localization tasks. In particular, LWLM achieves 26.0%--87.5% improvement over transformer models without pretraining, and exhibits strong generalization under label-limited fine-tuning and unseen BS configurations, confirming its potential as a foundation model for wireless localization.




Abstract:In closed-loop distributed multi-sensor integrated sensing and communication (ISAC) systems, performance often hinges on transmitting high-dimensional sensor observations over rate-limited networks. In this paper, we first present a general framework for rate-limited closed-loop distributed ISAC systems, and then propose an autoencoder-based observation compression method to overcome the constraints imposed by limited transmission capacity. Building on this framework, we conduct a case study using a closed-loop linear quadratic regulator (LQR) system to analyze how the interplay among observation, compression, and state dimensions affects reconstruction accuracy, state estimation error, and control performance. In multi-sensor scenarios, our results further show that optimal resource allocation initially prioritizes low-noise sensors until the compression becomes lossless, after which resources are reallocated to high-noise sensors.




Abstract:Dielectric response (DR) of insulating materials is key input information for designing electrical insulation systems and defining safe operating conditions of various HV devices. In dielectric materials, different polarization and conduction processes occur at different time scales, making it challenging to physically interpret raw measured data. To analyze DR measurement results, equivalent circuit models (ECMs) are commonly used, reducing the complexity of the physical system to a number of circuit elements that capture the dominant response. This paper examines the use of physics-informed neural networks (PINNs) for inverse modeling of DR in time domain using parallel RC circuits. To assess their performance, we test PINNs on synthetic data generated from analytical solutions of corresponding ECMs, incorporating Gaussian noise to simulate measurement errors. Our results show that PINNs are highly effective at solving well-conditioned inverse problems, accurately estimating up to five unknown RC parameters with minimal requirements on neural network size, training duration, and hyperparameter tuning. Furthermore, we extend the ECMs to incorporate temperature dependence and demonstrate that PINNs can accurately recover embedded, nonlinear temperature functions from noisy DR data sampled at different temperatures. This case study in modeling DR in time domain presents a solution with wide-ranging potential applications in disciplines relying on ECMs, utilizing the latest technology in machine learning for scientific computation.




Abstract:Gain-phase impairments (GPIs) affect both communication and sensing in 6G integrated sensing and communication (ISAC). We study the effect of GPIs in a single-input, multiple-output orthogonal frequency-division multiplexing ISAC system and develop a model-based unsupervised learning approach to simultaneously (i) estimate the gain-phase errors and (ii) localize sensing targets. The proposed method is based on the optimal maximum a-posteriori ratio test for a single target. Results show that the proposed approach can effectively estimate the gain-phase errors and yield similar position estimation performance as the case when the impairments are fully known.




Abstract:In this paper, we propose a novel decoding method for Quantum Low-Density Parity-Check (QLDPC) codes based on Graph Neural Networks (GNNs). Similar to the Belief Propagation (BP)-based QLDPC decoders, the proposed GNN-based QLDPC decoder exploits the sparse graph structure of QLDPC codes and can be implemented as a message-passing decoding algorithm. We compare the proposed GNN-based decoding algorithm against selected classes of both conventional and neural-enhanced QLDPC decoding algorithms across several QLDPC code designs. The simulation results demonstrate excellent performance of GNN-based decoders along with their low complexity compared to competing methods.

Abstract:We consider the problem of recovering spatially resolved polarization information from receiver Jones matrices. We introduce a physics-based learning approach, improving noise resilience compared to previous inverse scattering methods, while highlighting challenges related to model overparameterization.



Abstract:We propose a novel frequency-domain blind equalization scheme for coherent optical communications. The method is shown to achieve similar performance to its recently proposed time-domain counterpart with lower computational complexity, while outperforming the commonly used CMA-based equalizers.