IETR, INSA Rennes, MERCE-France
Abstract:The increasing deployment of large antenna arrays at base stations has significantly improved the spatial resolution and localization accuracy of radio-localization methods. However, traditional signal processing techniques struggle in complex radio environments, particularly in scenarios dominated by non line of sight (NLoS) propagation paths, resulting in degraded localization accuracy. Recent developments in machine learning have facilitated the development of machine learning-assisted localization techniques, enhancing localization accuracy in complex radio environments. However, these methods often involve substantial computational complexity during both the training and inference phases. This work extends the well-established fingerprinting-based localization framework by simultaneously reducing its memory requirements and improving its accuracy. Specifically, a model-based neural network is used to learn the location-to-channel mapping, and then serves as a generative neural channel model. This generative model augments the fingerprinting comparison dictionary while reducing the memory requirements. The proposed method outperforms fingerprinting baselines by achieving sub-wavelength localization accuracy, even in NLoS environments. Remarkably, it offers an improvement by several orders of magnitude in localization accuracy, while simultaneously reducing memory requirements by an order of magnitude compared to classical fingerprinting methods.
Abstract:Channel charting builds a map of the radio environment in an unsupervised way. The obtained chart locations can be seen as low-dimensional compressed versions of channel state information that can be used for a wide variety of applications, including beam prediction. In non-standalone or cell-free systems, chart locations computed at a given base station can be transmitted to several other base stations (possibly operating at different frequency bands) for them to predict which beams to use. This potentially yields a dramatic reduction of the overhead due to channel estimation or beam management, since only the base station performing charting requires channel state information, the others directly predicting the beam from the chart location. In this paper, advanced model-based neural network architectures are proposed for both channel charting and beam prediction. The proposed methods are assessed on realistic synthetic channels, yielding promising results.
Abstract:Integrated sensing and communications (ISAC) is envisioned as one of the key enablers of next-generation wireless systems, offering improved hardware, spectral, and energy efficiencies. In this paper, we consider an ISAC transceiver with an impaired uniform linear array that performs single-target detection and position estimation, and multiple-input single-output communications. A differentiable model-based learning approach is considered, which optimizes both the transmitter and the sensing receiver in an end-to-end manner. An unsupervised loss function that enables impairment compensation without the need for labeled data is proposed. Semi-supervised learning strategies are also proposed, which use a combination of small amounts of labeled data and unlabeled data. Our results show that semi-supervised learning can achieve similar performance to supervised learning with 98.8% less required labeled data.
Abstract:Modern communication systems rely on accurate channel estimation to achieve efficient and reliable transmission of information. As the communication channel response is highly related to the user's location, one can use a neural network to map the user's spatial coordinates to the channel coefficients. However, these latter are rapidly varying as a function of the location, on the order of the wavelength. Classical neural architectures being biased towards learning low frequency functions (spectral bias), such mapping is therefore notably difficult to learn. In order to overcome this limitation, this paper presents a frugal, model-based network that separates the low frequency from the high frequency components of the target mapping function. This yields an hypernetwork architecture where the neural network only learns low frequency sparse coefficients in a dictionary of high frequency components. Simulation results show that the proposed neural network outperforms standard approaches on realistic synthetic data.